

© 2025 Willy Kengne Kungne, Georges-Edouard Kouamou and Paul Ayang. This open-access article is distributed under a

Creative Commons Attribution (CC-BY) 4.0 license.

Journal of Computer Science

Original Research Paper

GenMicro: A Tool for Generating Microservice Architectures

with In-Depth Microservice Design

Willy Kengne Kungne, Georges-Edouard Kouamou and Paul Ayang

Department of Computer Engineering, National Advanced School of Engineering, University of Yaoundé I, Cameroon

Article history
Received: 30-08-2024
Revised: 11-12-2024
Accepted: 11-02-2025

Corresponding Author:
Willy Kengne Kungne
Department of Computer
Engineering, University of
Yaoundé I, Cameroon
Email: w.kungne@gmail.com

Abstract: MicroService Architecture (MSA) has become an increasingly

popular architectural style for distributed and service-based systems. Despite

the various facilities offered by existing frameworks, setting up a

microservice architecture remains challenging for developers. Also,

configuring all the microservices is time-consuming. Several tools have been

proposed for generating microservice architectures. For the most part, these
tools focus on the basic configuration aspects, leaving the business aspects

of each microservice to the developers. Thus, a question arises: How can

business elements be integrated into the definition of formalism in

microservices architecture alongside the configuration aspects? This study

proposes a tool named GenMicro, which is based on a detailed design. It

takes into account various elements such as business components, entities,

dependencies, or configurations encapsulated within nodes representing

microservices, utilizing a model-driven engineering approach to transform

them into code models for code generation. The tool has three components:

A graphical editor for architectural representation and internal description of

each microservice, an intermediate transformation engine to transform the
graphical elements into a code model, and a module to refine the code

according to the microservice architecture. The ready-to-use Java code

generated by GenMicro is compliant with the Spring Cloud Netflix

Framework and is deployment-ready.

Keywords: Microservice Architecture, Model-Driven Engineering,

Business Domain, Domain-Specific Languages, Java Code

Introduction

Microservice Architecture (MSA) is an increasingly

favored architectural style for distributed and service-

based systems (Sorgalla et al., 2018; Dragoni et al., 2017;

Mazzara et al., 2021). It utilizes the service concept as the

fundamental building block for a system's architecture. A

microservice is a cohesive and independent process that
interacts via messages (Dragoni et al., 2017; Pahl and

Jamshidi, 2016; Mazzara et al., 2021; Nadareishvili et al.,

2016; Neuman, 2015). This architecture represents an

emerging development paradigm in which software is

constructed by composing autonomous entities known as

microservices (Neuman, 2015; Thönes, 2015; Shadija et al.,

2017). Microservices communicate using

Representational State Transfer (REST) (Haupt et al.,

2014) or Message Queue (MQ) protocols.

To simplify the implementation complexity of MSA,

Model-Driven Engineering (MDE) is commonly

employed. MDE promotes the extensive use of models

throughout the software development process, leading to

the automated generation of the final application

(Whittle et al., 2014). The benefits of MDE include

enabling informed design decisions, ensuring that design

teams understand what is being developed, where to make

partitioning choices, and how the system will be built. It
effectively masks the great complexity of the various

configurations to be implemented. Moreover, models can

be defined using general-purpose modeling languages like

UML (Eriksson et al., 2003), although Domain Specific

Languages (DSL) (Mernik et al., 2005) are often used for

specific, well-defined domains. Tools based on UML or

DSL, for example, reduce the time and errors involved in

defining MSA.

The tools used for implementing microservices

architectures must consider the following key factors:

(i) Configuration of each microservice: Define the
role of the microservice along with its input and

output parameters

Willy Kengne Kungne et al. / Journal of Computer Science 2025, 21 (3): 729.740

DOI: 10.3844/jcssp.2025.729.740

730

(ii) Communication between microservices: The

Discovery server will discover each microservice.

Each microservice has a route configured in the

APIGateway, allowing one microservice to call

another within the architecture

(iii) The internal structure of each microservice: This

involves incorporating the business aspects of each

microservice to understand its functionalities.

(iv) Graphical definition of architectural elements:

Graphical tools enable developers to easily define or

modify architectural elements, unlike text-based

tools, where language syntax must be strictly

followed. This syntax can often be difficult to master,

whereas a graphical interface simplifies the

developers' work

Existing tools such as AjiL (Sorgalla et al., 2018),

JHipster (Raible, 2016), MAGMA (Wizenty et al., 2017),

MicroBuilder (Terzić et al., 2018), Sliceable Monolith

(Montesi et al., 2021), Microservice DSL (MDSL)

(Zimmermann et al., 2022), Magic (Bucchiarone et al.,

2023) and Silvera (Suljkanović et al., 2022) primarily

focus on the first two points, leaving the third to the

developers. Regarding the fourth point, tools such as AjiL

offer graphical interfaces for defining the architecture's

basic configuration.

This study proposes a new Domain-Specific Language

(DSL) for the automatic generation of Microservices

Architectures (MSAs). The proposed DSL emphasizes the

business aspect of a microservice in addition to its basic

configuration. It employs detailed design elements such

as class diagrams, component diagrams, and deployment

diagrams to generate the MSA of the application, where

each node represents a microservice.

The rest of the paper is organized as follows: The

second section covers the literature review, while the third

section presents GenMicro modeling. The fourth section

introduces the developed tool, and the fifth section

provides a case study of a shopping payment application.

The sixth section includes a discussion, and we conclude

with a summary and highlight future perspectives.

Background

Various definitions have been proposed for a

microservice, as presented in the previous section. These

definitions emphasize some level of independence, limited

scope, and interoperability. It is also important to view a
microservice within the context of an existing system. From

these definitions and its architecture, microservices have

several characteristics (Dragoni et al., 2017):

(i) Bounded context: Related functionalities are

combined into a single business capability, which is

then implemented as a service

(ii) Independence: Each microservice operates

autonomously from others

(iii) Flexibility: A system can adapt to the ever-changing
business environment and support necessary

modifications to remain competitive in the market

(iv) Modularity: A system is composed of isolated

components, with each component contributing to the

overall system behavior rather than having a single

component that offers full functionality

(v) Evolution: A system should remain maintainable

while constantly evolving and adding new features

In summary, MSAs consist of independently evolving

microservices that collaborate to implement a business

application. In order to hide the complexity of configuring

and implementing MSAs, Model Driven Architecture

(MDA) can be used. MDA is a specific proposition for

implementing MDE proposed by the Object Management

Group (OMG). It describes an approach based on

metamodels, abstract models (Platform-Independent

Models, PIM), and more specific models (Platform Specific

Model, PSM) that can be used to generate source code.

MDA includes a set of modeling and model

transformation techniques standardized by the OMG

(Kleppe et al., 2003; Blanc and Salvatori, 2011). This

approach promotes the use of models throughout various

phases of an application's development cycle. The

fundamental principle of MDA is to develop Platform-

Independent Models (PIM) and transform them into

Platform-Specific Models (PSM) for concrete

implementation of the system. Transformations between

PIM and PSM are typically carried out using automated

tools. Fig. (1) illustrates the different phases of the

approach. The transformation tools are compatible with

the OMG standard known as Query, View, and

Transformation (QVT). In this context, we propose a

Domain-Specific Language (DSL) to model the graphical

elements of our MSA. Model transformations will be used

to refine the models designed in the DSL into code.

A DSL is a high-level software implementation

language that supports concepts and abstractions related

to a particular (application) domain (Lämmel et al., 2008).

The aim of DSLs is to enhance the productivity of

software engineers by abstracting away low-level

boilerplate codes. In the next section, we present the DSL

tools, the majority of which use Model Driven

Engineering (MDE) to generate the MSAs.

Related Works

In recent years, various solutions have been proposed

to facilitate the generation of MSAs. In the following

paragraphs, we present a few of these tools and compare

them based on ease of use and the extent to which business

aspects are considered in the architecture description.

Willy Kengne Kungne et al. / Journal of Computer Science 2025, 21 (3): 729.740

DOI: 10.3844/jcssp.2025.729.740

731

Fig. 1: Overview of the MDA approach (Blanc and Salvatori,

2011)

JHipster (Raible, 2016) is a well-established tool for

generating Web form-based MSAs and includes a textual
modeling language for defining entities. JHipster's

objective is to provide a fully functional architecture with

front-end and back-end components. Technologically, it

depends on the Spring Framework for the back-end and

the various technologies available for front-end

implementation, such as Angular. JHipster does text-

based entity modeling.

MAGMA (Wizenty et al., 2017) is a build

management tool based on Maven's archetype

mechanism capable of creating microservice

foundations based on predefined service models.

However, due to its Maven dependency, microservices

are described textually, and it lacks the ability to

interlink individually generated microservices.

AjiL (Sorgalla et al., 2018) includes a full-fledged

graphical DSML dedicated to MSA, offering the

possibility of modeling a complete system base. AjiL does

not aim to provide fully functional back-end and front-end

components but rather aids developers in avoiding tedious

and redundant coding when creating their own

customized MSA. Notably, all modeled service interfaces

are generated as REST controllers exposing Create Read

Update Delete (CRUD) operations. Ajil focuses on

generating the code base while only modeling the basic

configuration of the MSA.

MicroBuilder (Terzić et al., 2018) comprises

MicroDSL & MicroGenerator, generating code for a

REST MSA using a model-based approach. Its aim is to

simplify the development of microservice-based

applications by handling complex tasks such as

microservice architecture configuration, load balancing,

automatic discovery and registration of microservices,

thus reducing development time by eliminating redundant

code templates. However, it emphasizes textual

specification without detailing the internal structure of a

microservice.
Sliceable Monolith (Montesi et al., 2021) advocates

first designing a monolithic architecture and then

transforming it into an MSA using the Jolie language to

specify the architecture. The approach differs from the

other tools in that it starts with a monolithic architecture

and evolves towards microservices. However, Jolie, being

text-based, might require a considerable amount of time

to grasp fully.

Microservice DSL (MDSL) (Zimmermann et al.,

2022) includes textual specifications based on Jolie.
According to its author, the language is intended for

contexts where a suite of microservices, along with their

various communication protocols (e.g., HTTP, message

queuing), need to be described. Additionally, the DSL can

be used to represent their subsequent request and response

messages, as well as the interface endpoint. Nevertheless,

MDSL serves as a tool exclusively designed for

specifying microservices rather than for direct

development. The code produced in either Java or Jolie

programming languages (Montesi et al., 2014) serves as a

template for the specified service, requiring developers to

implement the actual functionality.
Magic (Bucchiarone et al., 2023) is a DSL framework

for implementing language-independent microservices-

based Web applications. The framework can be used to

specify and deploy microservices-based software

applications end-to-end on Docker containers, which can

then be used like any other application on the Internet.

Magic focuses on the front end rather than the back end,

and its definition is textual.

Silvera (Suljkanović et al., 2022) aims to fulfill the

following criteria: (i) The language is easy to use for both

domain experts and beginners, (ii) It supports well-known

MSA design patterns as first-class concepts, (iii) It

supports heterogeneous technology stacks via an

extensible code generator framework, (iv) It provides

automatic generation of OpenAPI architecture diagrams

and documentation, and (v) It uses metrics tailored to

microservices to evaluate the architecture of the designed

system. However, via the SilveraDSL module, the

description of microservices is textual and does not take

into account the business aspect.

As a general remark, the tools reviewed are mostly

text-based, a feature that adds to the challenge of

mastering their usage. In contrast, the graphical tools

model the basic configuration, leaving the internal

modeling of each microservice to developers. The

following section delves into the definition of GenMicro,

which aims to enhance the language for microservices

architecture with a focus on the business aspect.

Willy Kengne Kungne et al. / Journal of Computer Science 2025, 21 (3): 729.740

DOI: 10.3844/jcssp.2025.729.740

732

Materials and Methods

GenMicro is built using a series of steps based on the

MDA methodology:

- Step 1: Formalisation (PIM) & Constraints

- Step 2: Codes Model (PSM)

- Step 3: Transformation Rules (PIM to PSM) &

Refinement (PSM to Java Codes)

Step 1: Formalisation (PIM) & Constraints

PIM allows to build models that are not linked to the

underlying technology. We offer models that represent

class diagrams, business components, and boxes to

represent elements such as configurations and

dependencies, as well as Microservices. The EMF-based

abstract syntax tree in Fig. (2) illustrates an application

based on the MSA, representing the PIM model.

An application consists of a set of microservices, each

containing configurations and dependencies. Three types

of microservices have been identified:

(i) Discovery: A microservices-based application

generally runs in virtualized or containerized

environments. The number of instances of a service

and their locations change dynamically. We need to

know where these instances are and their names to

enable requests to reach the target microservice.

This is where the microservice Discovery is

important. Discovery acts as a registry in which the

addresses of all instances are tracked. So there's an

implicit link between all the microservices and the

Discovery microservice

(ii) APIGateway: An APIGateway is a conductor that

organizes the requests processed by the MSA to

create a simplified user experience. An

APIGateway is set up in front of the microservices

and becomes the entry point for each new request

executed by the application. It communicates with

all other business microservices

(iii) BusinessMicro: A BusinessMicro represents the

business of each microservice. The internal

architecture of a microservice is a layered

architecture where one can represent the controllers

via the SetService class and the business via the

Business class. This latter class contains a set of

methods that implement the services that will be

exposed in the controllers. The final layer is the

database model, represented by the Entity,

RelationShip, IdClass, and Attribute classes. These

different classes are derived from the work of

Kouamou and Kungne (2017), which propose an

approach to generating layered architectures.

Structural constraints within the meta-model have

been established to ensure specific criteria, including

verifying the definition of class names, preventing links

from connecting entities across different microservices

and enforcing that connections between a method and an

entity are contained within the same microservice. Only

one APIGateway and Discovery are allowed.

In Fig. (2), the Sequence class is used to describe a set

of instructions implemented within a method, introducing

the dynamic aspect by describing the method’s behaviour.

A sequence is linked to a method and possibly to an entity.

It contains the following properties:

- instructionType: This indicates the type of the

instruction which can take several values:

o CREATE and UPDATE: Used to create or

modify columns within the entity; the column(s)

to be added/updated are in attNames

o CHECK: Used to verify one or more columns in

the database; the column(s) to be checked are in

attsName

o DELETE: Used to delete a line in the entity

o API: Used to call an external API

- attsName: Contains the list of columns affected by

the instruction type

- seqNum: This very important field specifies the

sequence number, which will allow instructions to be

sequenced according to their sequence number

- apiRequest: This field is used when the value of
instructionType is set to API to specify the request to

be implemented

- apiResponse: This field is used when the

instructionType value is set to API to specify the

properties of the returned object

Step 2: Codes Model (PSM)

To obtain a specific model, the execution platform(s)

must be chosen (several platforms can be used to

implement the same model). The runtime characteristics

and configuration information that have been defined

generically are converted to take account of the platform

specifics of MSA. For example.

BusinessMicro, APIGateway & Discovery have been
merged into Microservice, while Component and SetService

have been merged into BusinessClass. Figure (3) shows the

code model.

The code model adds technological elements to the

PIM model (Fig. 2). Given that the target model (PSM) is

object-oriented, the code is made up of a set of classes,

and we have aggregated concepts such as SetService,

Component & Entity into classes in a multi-layered

structure, the main layers of which are controller,

business and dao.

Willy Kengne Kungne et al. / Journal of Computer Science 2025, 21 (3): 729.740

DOI: 10.3844/jcssp.2025.729.740

733

Fig. 2: Formalism for describing an MSA used in GenMicro

Fig. 3: Metamodel representing the code to be generated

Willy Kengne Kungne et al. / Journal of Computer Science 2025, 21 (3): 729.740

DOI: 10.3844/jcssp.2025.729.740

734

With regard to the interpretation of the Sequences of

instructions to be generated within a method, the user can

specify the steps to be followed:

- If the instructionType is CHECK, a parameterized

query (findBy) is created in the repository class and

called inside the method

- If the instructionType is CREATE, a parameterised

query is defined if it does not already exist. This

query is then called to check if the object exists; the

associated entity is instantiated, its properties are

defined and the insert function is called.

- If the instructionType is UPDATE, a parameterised

query is defined if it does not exist and invoked. The

different properties are defined, and the update
function is called.

- If the instructionType is API, the apiRequest and

apiResponse attributes are used respectively to call a

remote REST web service and build its response

The transformation rules are presented in the next

subsection.

Step 3: Transformation Rules & Refinement

Table (1) presents a non-exhaustive list of

transformation rules used to transfer concepts from the
source meta-model (MSA description formalism) to the

target meta-model (code model).

Table 1: Transformation rules

Source Target Comments

Application Application

ApplicationToApplication: transforms the

name, description, and set of microservices.

Three types of microservices will be obtained

BusinessMicro Microservice

businessMicro2Microservic: Transforms the

name, description, #business microservice,

configurations, dependencies, entities, and

businessClass into the target business

microservice

ApiGateway Microservice

apiGateway2Microservice: transforms the

name, description, #apigateway microservice

type, configurations and dependencies into

the target #apigateway microservice type

Discovery Microservice

discovery2Microservice: Transforms the

name, description, #discovery microservice,

configurations and dependencies into the

target #discovery microservice

Dependency Dependency

dependency2Dependency: Transforms

groupId & artifactId into their equivalents in
the codes model

Configuration Configuration

configuration2Configuration: Transforms

key & value into their equivalents in the
codes model

RelationShip RelationShip

relationShip2RelationShip: Transforms the
properties (name, cardinality, direction,

source, and target) of a relationship into a

code model that can be easily interpreted in

the target language

Business BusinessClass

Business2BusinessClass: Transforms

business elements such as class names,

attributes, and methods into a code model

Method Method

Method2Method: Transforms the elements of

a method, such as a name, parameters as

inputs, parameters as outputs, and

exceptions, into a code model

In the next section, we implement these rules using the

ATLAS Transformation Language (ATL) language

(Jouault et al., 2008).
Refinement involves leveraging the experience gained

over many years of software development. We introduce

technological elements from the code model, transforming

each element into classes or packages according to the

components of the Spring Cloud Netflix framework.

Results and Discussion

To facilitate the generation of MSA from analysis and

design elements, the proposed tools are built as Eclipse

pluginsplugins using the Eclipse Modeling Framework

(EMF), the Graphical Modeling Framework (GMF), and

ATL software.

Framework Building Environment

EMF is a modeling framework that involves code

generation from a data model. It is a Java implementation

of a subset of the OMG Meta-Object Facility (MOF)

standard. To avoid ambiguities with MOF, EMF models

conform to the eCORE meta-model. We used EMF to

build the formalism of our models. Figures (4a-b) show
the two eCORE meta-models we have developed.

However, EMF does not offer graphical modeling tools,

which is why GMF is also used. GMF is a framework for

creating a graphical editor from a data model based on the

Eclipse platform. This tool is composed of EMF and

Graphical Editor Framework (GEF), the latter consisting

of two parts:

(a)

Willy Kengne Kungne et al. / Journal of Computer Science 2025, 21 (3): 729.740

DOI: 10.3844/jcssp.2025.729.740

735

(b)

Fig. 4: (a) eCore for microservices description; (b) eCore for

codes model

- Graphic definition model: Represented by the

.gmfgraph file extension, this model is used to specify

the graphic elements of the model. Figure (5) shows

the various graphical nodes defined.

- Tool definition model: Represented by the .gmftool

file extension, this model is used to specify palette

elements. Users can drag and drop palette elements to

add new graphical elements, which can be a node
(Entity, Component, Method, etc.) or a relationship

(relationship between two entities or a sequence

between a method and an entity). Figure (6) shows

the defined palette elements.

To link the EMF models to GEF, GMF assembles a

file with the gmfmap extension via the mapping model.

Figure (7) defines the layout of the various compartments

in order to define the graphical elements.

Each element of the graphical definition model is

assigned a node and an action, along with the

corresponding data model class. After this step, a new

.gmfgen file can be generated to consolidate all project

information. ATL allows you to specify the rules for
transforming service models and logical views into the

implementation view. Figure (8) illustrates 3 of the 16

rules defined.
These various elements enable us to define our

graphical editor, with the main interface shown in Fig. (9).

The central view of the interface shows the elements of

the architecture being modeled, including nodes and

relationships, whose properties can be consulted. The

palette elements on the left can be dragged and dropped

onto the central view, and no errors will occur as long as

constraints are respected.

In the next subsection, we will implement an example
of a simplified e-commerce application using our tool.

Fig. 5: Some nodes implemented

Fig. 6: Palette elements

Fig. 7: Elements of the map

Willy Kengne Kungne et al. / Journal of Computer Science 2025, 21 (3): 729.740

DOI: 10.3844/jcssp.2025.729.740

736

Fig. 8: Transformation rules implemented

Fig. 9: Main Interface of the developed plugin

Case Study

This subsection presents a case study of an application

for payment by transfer after product purchases. The

application is divided into microservices for flexibility or

scalability. Figure (10) shows a simplified view of the

architecture, which includes three business services:

MSUser for user management and authentication,

MSShop for shopping cart management, and MSBank for

managing bank transfer payments. In the next sub-section,

we detail the functionality of each microservice and how
they are designed using GenMicro.

Realization

Figure (11) shows the model of our case study,

extracted from a Fintech Project. Using the Agile

SCRUM method, three business microservices, along

with the microservices for API Gateway and Discovery,

were designed after a few sprints. Each microservice was

designed using GenMicro's graphical interface, which

implicitly generates all CRUD methods for the defined

entities and interprets personalised business methods. For

example, in the OrderManager business component, the

addProduct method checks that both orderId and

productId exist before adding the product to the order by

inserting a row in the Contain table. Sequences 1, 2, and

3, which are linked to addProduct, define this situation.

Similar interpretations are applied to all the other

personalized methods. In summary, the following

microservices have been generated using GenMicro:

- A microservice for user management and

authentication (MSUser): This microservice is used
to manage security, which is essential in such a

system. The business related to token creation and

validation is implicitly generated and linked to the

entity containing the login and password. The entities

linked to the management of roles and privileges have

been designed and associated with the business

components. In Fig. (11), AuthorizationManager

implements business services such as

listAuthOfProfile, which lists a profile's

authorizations and the redefinition of the save

function (saveAuth). For each of these methods, the
sequence of operations is defined.

- A microservice for managing the shopping basket

(MSShop): This microservice is used to manage the

orders of a bank user identified by their (mobile)

telephone number. Customized methods such as

adding a product to an order or listing the products in

an order have been defined.

- A microservice for managing payments by transfer:

For this microservice, the Account, Customer, and

Transaction type entities have been designed. A

customer can have multiple accounts each linked to

the same customer. Similarly, a customer can carry

out several types of operations. Business methods

such as calculating fees or transferring money from

a customer account to a merchant account have been

specified.
- Microservices linked purely to the architecture

configuration, such as API Gateway & Discovery,

have been generated.

Willy Kengne Kungne et al. / Journal of Computer Science 2025, 21 (3): 729.740

DOI: 10.3844/jcssp.2025.729.740

737

Fig. 10: Microservices architecture of the application

Model Transformation and Source Codes

The model in Fig. (11) is transformed using the rules

in Fig. (8) and finally refined to obtain the code shown in

Fig. (12). These codes are ready to be deployed in docker

containers. For each microservice, a layered architecture

was generated, including entities, repositories, businesses,

and controllers. The DockerFile (for each microservice)

and docker-compose.yml files were also generated. Once

the microservices architecture has been generated,

DevOps practices (Bass et al., 2015) can be used to

manage the deployment of the microservices. Apart from

the CRUD methods that are automatically generated, the

user can design their own methods and link them to the

entities as shown. This last aspect makes it possible to

generate as much code as possible.

Genmicro not only makes it easier for developers to

configure the microservices architecture but also helps

them write the code for each microservice. For each

microservice, 100% of the code has been generated. These

codes are ready to be deployed. However, GenMicro

should integrate the complete semantics of UML

interaction diagrams instead of just providing sequences

of instructions on the entities or API calls. GenMicro aims

to assist developers in the realization of their projects.

Based on the conceptual elements, the tool automatically

generates the code to ensure that the software produced

aligns with the designed requirements. Once the

developers have understood the customer's requirements,

GenMicro allows them to model (by dragging and

dropping elements from the palette) the business elements

(entities, business components …) and to save a lot of

time by generating code. When conceptual elements are

updated, the user can regenerate the code. The tool will

take updates into account.

Discussion

Several tools have focused on MSA generation, as

outlined in the introduction. These tools were revisited
and discussed on the basis of their properties, which

include: Basic configuration, graphical/textual nature,

CRUD generation, and Business operation modeling.

Table (2) provides a detailed comparison with existing

tools based on the above properties.

Fig. 11: Application modeling with GenMicro

Willy Kengne Kungne et al. / Journal of Computer Science 2025, 21 (3): 729.740

DOI: 10.3844/jcssp.2025.729.740

738

Fig. 12: Generated codes

Table 2: Comparison of GenMicro with existing tools

Existing tools Basic config Graphics

CRUD

generation

Business

operation

modeling

JHipster  ×  ×

MAGMA  × × ×

AjiL    ×

Sliceable

Monolith
 × × ×

Microservice

DSL
 ×  ×

Magic  × × ×

Silvera  × × ×

GenMicro    

While all the tools considered take into account the

basic configuration of the various microservices, most do

not address the internal modeling of microservices, which

is one of the key elements of the tool presented in this

study.

Graphical tools are generally easier to learn than
textual ones, which can be more difficult to master.

JHipster offers a textual language based on entities, while

MAGMA also offers a textual language based on Maven.

Sliceable Monolith and Microservice DSL (MDSL) are

based on Jolie, a text-based approach for specifying

Microservices architecture. Similarly, Silvera follows a

text-based approach. In contrast, this study introduces a

graphical editor tailored to model the internal structure of

each microservice.

AjiL is a specialized graphical tool designed

exclusively for Microservices Architecture (MSA),

enabling users to model the basic elements of the system.

While it does not emphasize the business aspect, all

service interfaces modeled in AjiL are automatically

generated into REST controllers that expose Create, Read,

Update, and Delete (CRUD) operations, similar to the

approach in Microservice DSL, where each Microservice

exposes CRUD operations for interacting with specific

datasets. JHipster can also be used to generate the CRUD

elements of a modeled application. However, none of

these tools can fully describe all data via diagrams or

incorporate business operations comprehensively.

Conclusion

In this study, we propose a new tool for generating

MSAs from system analysis and design elements. In

addition to the basic configuration elements, we have

integrated business domain elements into the tool. The

core idea is to consider the internal structure of each

microservice when generating the MSA. Using MDA,

we proposed a suite of meta-models describing the MSA

and the internal structure of each microservice. We used
ATL to automate the generation of the intermediate

model and its refinement into code targeting Java

alongside the Spring Cloud Netflix Framework. The

strength of the proposed tool lies in its consideration of

the internal architecture of each microservice, which

consistently aims to simplify developers' tasks. By

taking as input a graphical representation of the class

diagram, business components, and nodes representing

each microservice, the tool converts them into code,

thereby reducing application development costs. Some

thought has been given to describing the dynamics of

business methods. We have proposed a simple
representation of the interactions between a method

belonging to a business component and an entity, as well

as the calling of external APIs. In future work, we intend

to improve this representation by integrating all the

UML semantics of sequence or collaboration diagrams.

Despite the generation of DockerFile and docker-

compose, an important point for future consideration is

the integration of other scripts (Burns et al., 2022)

during the refinement process to facilitate the continuous

deployment of the generated architecture.

Acknowledgment

We would like to thank all the reviewers of this study.

Funding Information

This research received no external funding.

Willy Kengne Kungne et al. / Journal of Computer Science 2025, 21 (3): 729.740

DOI: 10.3844/jcssp.2025.729.740

739

Author’s Contributions

Willy Kengne Kungne: Designed the tool, defined

the methodology, developed the software and wrote the

various versions of the manuscript.

Georges-Edouard Kouamou: Proposed the

methodology and supervised the writing of the

manuscript.

Paul Ayang: Contributed to the development of the

software.

All authors have read and agreed to the published

version of the manuscript.

Ethics

The authors affirm that this article is an original work

and has not been previously published elsewhere.

References

Bass, L., Weber, I., & Zhu, Liming. (2015). DevOps: A

software architect’s perspective.

Blanc, X., & Salvatori, O. (2011). MDA in action: Model-

driven software engineering. Editions Eyrolles.

Bucchiarone, A., Ciumedean, C., Soysal, K., Dragoni, N.,

& Pech, V. (2023). Magic: a DSL Framework for

Implementing Language Agnostic Microservice-

based Web Applications. The Journal of Object

Technology, 22(1), 1–21.

https://doi.org/10.5381/jot.2023.22.1.a2

Burns, B., Beda, J., Hightower, K., & Evenson, L. (2022).

Kubernetes: Up and Running: Dive into the Future of

Infrastructure.

Dragoni, N., Giallorenzo, S., Lafuente, A. L.,

Mazzara, M., Montesi, F., Mustafin, R., & Safina,

L. (2017). Microservices: Yesterday, Today and

Tomorrow. Present and Ulterior Software

Engineering, 195–216.

 https://doi.org/10.1007/978-3-319-67425-4_12

Eriksson, H.-E., Penker, Magnus, Lyons, B., & Fado, D.

(2003). UML 2 toolkit.

Haupt, F., Fischer, M., Karastoyanova, D., Leymann,

F., & Vukojevic-Haupt, K. (2014). Service

Composition for REST. 2014 IEEE 18th

International Enterprise Distributed Object

Computing Conference, 110–119.

https://doi.org/10.1109/edoc.2014.24

Jouault, F., Allilaire, F., Bézivin, J., & Kurtev, I. (2008).

ATL: A model transformation tool. Science of

Computer Programming, 72(1–2), 31–39.

https://doi.org/10.1016/j.scico.2007.08.002

Kleppe, A. G., Warmer, J. B., & Bast, W. (2003). MDA

Explained: The Model Driven Architecture : Practice

and Promise.

Kouamou, G. E., & Kungne, W. K. (2017). A Structural

and Generative Approach to Multilayered Software

Architectures. Journal of Software Engineering and

Applications, 10(08), 677–692.

https://doi.org/10.4236/jsea.2017.108037

Lämmel, R., Visser, J., & Saraiva, J. (2008). Generative

and Transformational Techniques in Software

Engineering II: International Summer School,

GTTSE 2007, Braga, Portugal, July 2-7. 2007,

Revised Papers. https://doi.org/10.1007/978-3-540-

88643-3

Mazzara, M., Dragoni, N., Bucchiarone, A., Giaretta,

A., Larsen, S. T., & Dustdar, S. (2021).

Microservices: Migration of a Mission Critical

System. IEEE Transactions on Services

Computing, 14(5), 1464–1477.

https://doi.org/10.1109/tsc.2018.2889087

Mernik, M., Heering, J., & Sloane, A. M. (2005). When

and how to develop domain-specific languages. ACM

Computing Surveys, 37(4), 316–344.

https://doi.org/10.1145/1118890.1118892

Montesi, F., Guidi, C., & Zavattaro, G. (2014). Service-

Oriented Programming with Jolie. Web Services

Foundations, 81–107. https://doi.org/10.1007/978-1-

4614-7518-7_4

Montesi, F., Peressotti, M., & Picotti, V. (2021). Sliceable

Monolith: Monolith First, Microservices Later. 2021

IEEE International Conference on Services

Computing (SCC), 364–366.

https://doi.org/10.1109/scc53864.2021.00050

Nadareishvili, I., Mitra, R., McLarty, M., & Amundsen,

M. (2016). Microservice Architecture: Aligning

Principles, Practices, and Culture.

Neuman, S. (2015). Building microservices: Designing

fine-grained systems.

Pahl, C., & Jamshidi, P. (2016). Microservices: A

Systematic Mapping Study. In Proceedings of the 6th

International Conference on Cloud Computing and

Services Science (CLOSER 2016), 137–146.

Raible, M. (2016). The JHipster mini-book. Lulu. Com.

https://www.jhipster.tech/

Shadija, D., Rezai, M., & Hill, R. (2017). Towards an

understanding of microservices. 2017 23rd

International Conference on Automation and

Computing (ICAC), 1–6.

https://doi.org/10.23919/iconac.2017.8082018

Sorgalla, J., Wizenty, P., Rademacher, F., Sachweh, S., &

Zündorf, A. (2018). AjiL: enabling model-driven

microservice development. ECSA ’18: Proceedings

of the 12th European Conference on Software

Architecture: Companion Proceedings, 1–4.

https://doi.org/10.1145/3241403.3241406

https://doi.org/10.5381/jot.2023.22.1.a2
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1109/edoc.2014.24
https://doi.org/10.1016/j.scico.2007.08.002
https://doi.org/10.4236/jsea.2017.108037
https://doi.org/10.1007/978-3-540-88643-3
https://doi.org/10.1007/978-3-540-88643-3
https://doi.org/10.1109/tsc.2018.2889087
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1007/978-1-4614-7518-7_4
https://doi.org/10.1007/978-1-4614-7518-7_4
https://doi.org/10.1109/scc53864.2021.00050
https://www.jhipster.tech/
https://doi.org/10.23919/iconac.2017.8082018
https://doi.org/10.1145/3241403.3241406

Willy Kengne Kungne et al. / Journal of Computer Science 2025, 21 (3): 729.740

DOI: 10.3844/jcssp.2025.729.740

740

Suljkanović, A., Milosavljević, B., Inđić, V., &

Dejanović, I. (2022). Developing Microservice-

Based Applications Using the Silvera Domain-

Specific Language. Applied Sciences, 12(13),

6679. https://doi.org/10.3390/app12136679

Terzić, B., Dimitrieski, V., Kordić, S., Milosavljević,

G., & Luković, I. (2018). Development and

evaluation of MicroBuilder: a Model-Driven tool

for the specification of REST Microservice

Software Architectures. Enterprise Information

Systems, 12(8–9), 1034–1057.

https://doi.org/10.1080/17517575.2018.1460766

Thönes, J. (2015). Microservices. IEEE Software, 32(1),

116–116. https://doi.org/10.1109/ms.2015.11

Whittle, J., Hutchinson, J., & Rouncefield, M. (2014). The

State of Practice in Model-Driven Engineering. IEEE

Software, 31(3), 79–85.

https://doi.org/10.1109/ms.2013.65

Wizenty, P., Sorgalla, J., Rademacher, F., & Sachweh,

S. (2017). MAGMA: build a management-based

generation of microservice infrastructures.

Proceedings of the 11th European Conference on

Software Architecture: Companion Proceedings,

61–65. https://doi.org/10.1145/3129790.3129821

Zimmermann, O., Stocker, M., Lubke, D., Zdun, U., &

Pautasso, C. (2022). Patterns for API design:

simplifying integration with loosely coupled message

exchanges.

https://doi.org/10.3390/app12136679
https://doi.org/10.1080/17517575.2018.1460766
https://doi.org/10.1109/ms.2015.11
https://doi.org/10.1109/ms.2013.65
https://doi.org/10.1145/3129790.3129821

