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Abstract: The rapid proliferation of digital misinformation highlights the 

urgent need for robust automated fact-checking systems that can accurately 

distinguish truth from falsehood. A persistent challenge for these systems is 

the occurrence of false positives, where truthful information is incorrectly 

flagged as misleading due to limitations in evidence assessment, including 

insufficient evidence, logical inconsistencies, and conflicting information. 

This research introduces a novel two-phase approach to address these issues. 
In Phase 1, relationships between claims and evidence are modeled using a 

graph-based mechanism to identify evidence-related shortcomings that 

contribute to false positives. Phase 2 enhances evidence quality by 

integrating domain-specific knowledge, employing pretrained language 

models such as BERT, RoBERTa, and BioBERT across diverse datasets like 

FEVER, LIAR-Plus, HoVER, and PubMed. Our findings demonstrate that 

addressing these evidence-related factors significantly reduces false 

positives, resulting in more accurate fact-checking. These results underscore 

the effectiveness of our enhanced evidence assessment method, providing 

valuable insights for developing reliable fact-checking systems adaptable 

across multiple domains. This research lays a foundation for future 

innovations in misinformation mitigation, fostering a more trustworthy 
digital information landscape. 

 

Keywords: Fact-Checking, False Positives, Evidence-Related Factors, 

Misinformation, Insufficient Evidence, Claim-Evidence Mapping  

 

Introduction 

The massive increase in digital content production 

presents a significant challenge in maintaining accuracy 

and truthfulness. In these circumstances, automated fact-

checking systems have become essential to upholding the 

credibility of public discourse (Thorne and Vlachos, 

2018). Initially, these systems relied on basic techniques, 

primarily matching claims against verified facts Lee et al. 

(2023). However, as misinformation has grown more 

complex, the demand for sophisticated approaches has 

intensified Schlichtkrull et al. (2023). 

Advanced techniques are now crucial for addressing 

the complexities of false narratives and intricate 

deceptions Vladika et al. (2023). Despite these 

advancements, even the most sophisticated fact-checking 

systems face significant limitations. The multifaceted 

nature of evidence can lead these systems to incorrectly 

flag accurate information as false Martín et al. (2022). 

Such errors often stem from various evidence-related 

challenges, including insufficient support, discrepancies 

between sources, and logical contradictions Zhu et al. 

(2021). Recognizing and addressing these factors is 

essential; fact-checking systems must be designed with a 

heightened awareness of these challenges and equipped 

with mechanisms to mitigate their impact. 

The challenge, therefore, lies not only in detecting 

falsehoods but also in discerning the nuances that signify 

truth, especially when evidence is incomplete or open to 

interpretation. A crucial element of this nuanced analysis 

is understanding the complex interplay between a claim 

and its supporting or refuting evidence. This requires a 

mechanism capable of mapping and visualizing these 

relationships, moving beyond mere evidence retrieval to 

critically assess the relevance, coherence, and overall 

contribution of the evidence to veracity assessment. 

Integrating such a mapping mechanism into fact-checking 

systems can help reduce false positives, ensuring that 

genuinely misleading content is flagged while credible 

information is preserved. 
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Previous studies by Atanasova et al. (2019; 2020; 

2022) have shown that fact-checking systems can produce 

misleading results due to inaccuracies, ambiguities, and 

biases in claims. While some research has examined the 

role of evidence in fact-checking, existing systems often 

fail to thoroughly analyze the evidence-related factors 

necessary for accurate verification Barik et al. (2022); 

Barve et al. (2022). Notably, there is a gap in research on 

developing robust mapping mechanisms that connect 

claims to their supporting or refuting evidence. 

Addressing this gap is essential for understanding cases 

where evidence may be insufficient, conflicting, or open 

to interpretation. Our study focuses on this critical need 

by developing and integrating a novel mapping 

mechanism within an automated fact-checking system. 

We aim to identify key evidence-related factors that 

contribute to inaccurate predictions, such as insufficient 

support for claims, conflicting information from various 

domains, and issues with logical coherence. Our 

mapping mechanism will enable us to visually represent 

and analyze these factors, revealing potential 

inconsistencies, evaluating source quality, and assessing 

the overall strength and coherence of the evidence 

supporting a claim. 

We closely examine the performance of our mapping 

mechanism by focusing on instances where the fact-

checking model produces inaccurate predictions. The 

goal is to understand the nature and causes of these 

inaccuracies, particularly how they relate to the 

evidence-related factors identified through the mapping 

process. Our analysis takes a two-pronged approach. 

First, we systematically introduce specific evidence-

related factors into the fact-checking model and observe 

their individual and combined effects on performance, 

enabling us to determine which factors are most strongly 

linked to inaccurate predictions. Second, we refine the 

mapping mechanism by iteratively improving the quality 

and representation of the initially identified evidence. 

This may involve incorporating source reliability 

metrics, enhancing the visualization of logical 

connections, or developing more nuanced 

categorizations of evidence types. 

This systematic process helps us assess the 

incremental effect of each factor on fact-checking 

accuracy, ensuring that the model's effectiveness 

improves without altering the fundamental meaning of the 

claims being evaluated. To rigorously test our approach, 

we experiment with established language models such as 

BERT Devlin et al. (2019), RoBERTa Liu et al. (2019), 

and BioBERT Lee et al. (2020). These models are 

evaluated by strategically excluding and including 

specific evidence-related factors, using comprehensive 

datasets such as FEVER Thorne et al. (2018), HoVER 

Jiang et al. (2020a), LIAR-PLUS Alhindi et al. (2018) and 

PubMed Dernoncourt and Lee (2017). 

We assess the effectiveness of our mapping 

mechanism through a two-part evaluation. First, we use 

standard metrics, including accuracy, precision, recall, 

and F1-score, to measure the model's overall 

performance. Second, we conduct expert evaluations, 

focusing on instances where evidence-related factors 

could lead to misleading fact-checking results. This 

human-in-the-loop approach provides qualitative insights 

into the model's strengths and weaknesses, particularly in 

navigating complex evidence landscapes. 

Our findings demonstrate that the proposed mapping 

mechanism effectively identifies and highlights 

misleading evidence-related factors, resulting in a more 

nuanced and accurate assessment of claim veracity. This 

research not only advances the field methodologically but 

also offers practical insights for improving the precision 

and reliability of automated fact-checking systems. By 

promoting rigorous benchmarks and continuous 

improvement, we aim to contribute to a digital 

environment where truth prevails, fostering a more 

informed global community. To aid in understanding the 

key terms and acronyms used throughout this study, a list 

of abbreviations is provided in Table (1). 

Related Work  

The rapid expansion of digital content and the rise of 

unreliable and false narratives present a significant 

challenge in maintaining information integrity. This 

underscores the urgent need for effective automated fact-

checking systems. While technological advancements are 

vital for the development of these systems, it is equally 

essential to examine their underlying structures, 

especially regarding evidence evaluation. This section 

reviews current fact-checking approaches, focusing on the 
intricate relationship between evidence-related factors 

and the prediction of inaccuracies. 
 
Table 1: List of abbreviations and their descriptions 

Abbreviation Description 
BERT Bidirectional encoder representations from 

transformers 

RoBERTa Robustly optimized BERT 

BioBERT BERT model pre-trained on large-scale 
biomedical corpora for biomedical text 

mining 
FEVER Fact extraction and verification dataset, 

used for fact-checking tasks 

LIAR A dataset consisting of political statements 
and their truthfulness labels 

HoVER A dataset for many-hop fact extraction and 
claim verification 

PubMed A dataset consisting of biomedical research 
articles used for scientific claim verification 
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A substantial body of research Bekoulis et al. (2021); 

Kruengkrai et al. (2021); Ostrowski et al. (2021); Sarrouti et al. 

(2021); Sathe et al. (2020); Thorne and Vlachos (2018) 
have explored the role of evidence in validating or 

refuting claims. Numerous studies by Augenstein et al. 

(2019); and Popat et al. (2018a) reveal that automated 

systems frequently struggle with the complexity of 

evidence, particularly in terms of adequacy, relevance, 

and source credibility. The reliability of these systems is 

strongly influenced by their ability to assess evidence 

contextually, evaluate its credibility, and integrate 

information from multiple sources. 

Several studies Augenstein et al. (2019); Rashkin et al. 
(2017); Thorne (2021); Walter et al. (2020); Yang et al. 

(2024) have highlighted the impact of evidence 
presentation on fact-checking outcomes, with variations in 

evidence leading to inconsistent results across different 
systems. These disparities underscore the challenges of 

creating consistent frameworks for evidence evaluation 
that are both robust and adaptable to diverse 

informational scenarios. Additionally, some research by 
Das et al. (2023); Freeze et al. (2021); and Pathak (2022) 

has emphasized the limitations of current models in 
capturing and utilizing subtle evidential nuances for 

well-informed decision-making. 
Numerous investigations by Barve et al. (2022); 

Bekoulis et al. (2021); Oh et al. (2022); Conroy et al. 
(2015); Hassan et al. (2017); Smeros et al. (2021) have 

underscored the need for adaptable methods that can 
analyze various forms of evidence, including user-

generated content, expert opinions and statistical data. 
These methods are critical in advancing fact-checking by 

ensuring a comprehensive evaluation of complex 
claims. Collectively, these studies Atanasova et al. 

(2019); Barve et al. (2022); Miranda et al. (2019); and 
Samarinas et al. (2021) provide foundational insights into 

how evidence assessment informs automated fact-
checking and suggest directions for future research in this 

area. They highlight the complexities of evidence 
evaluation and emphasize its critical role in improving 

prediction accuracy. 
A recurring challenge identified in prior research by 

Pennycook et al. (2020); and Thorne et al. (2018) is the 
issue of insufficient evidence, which can lead to false 

negatives (where false claims are classified as true) or 
false positives (where true claims are misclassified as 

false). Insufficient evidence limits a system's ability to 
verify claims, resulting in either conservative 

classifications or incorrect rejections Choi and Ferrara 
(2024); Forstmeier et al. (2017); Pennycook et al. (2020); 

Rosso et al. (2020). Furthermore, when evidence is 
ambiguous or contradictory, automated systems may 

struggle to identify the most credible sources or effectively 
synthesize information, complicating accurate classification 

Aly et al. (2021); Azevedo (2018); Hassan et al. 2017; 
Huynh and Papotti (2018); Singh et al. (2021). 

Another critical issue is the logical coherence of 
evidence. Some fact-checking systems may overly rely on 

pattern recognition or superficial characteristics, failing to 
fully evaluate the logical framework of the evidence. This 

can lead to inaccurate classifications, particularly when 
evidence appears to support a claim initially but does not 

substantiate it upon closer analysis Ciampaglia et al. 
(2015); Gencheva et al. (2019); Huynh and Papotti 

(2018); Kotonya and Toni (2024); Yang et al. (2022); 
Yao et al. (2023); Zhang and El-Gohary (2017). Cross-

domain inconsistencies also pose significant challenges, 
as fact-checking systems must assess the truthfulness of 

statements based on information from unrelated domains. 
Systems must navigate conflicting data and assess the 

trustworthiness of each source. 
Research studies by Gencheva et al. (2019); Kao and 

Yen (2024); Li et al. (2022); Sathe et al. (2020); and Tsai 
(2023) have explored methods for improving the 

identification and resolution of domain-specific 
inconsistencies. One approach involves hybrid models 

that combine rule-based methods with statistical learning 
to more effectively distinguish conflicting data. These 

models leverage domain knowledge embedded in rules 
while benefiting from the adaptability of machine 

learning algorithms. These findings emphasize the need 
for improved models capable of handling complex 

evidence and suggest that advancements in evidence 
representation, sourcing, and interpretation are essential 

to reducing false negatives and false positives in fact-
checking systems. 

Fact-checking systems have historically been 

criticized for not adequately accounting for the evolving 

and multifaceted nature of evidence, such as its 

adequacy, significance, and the trustworthiness of its 
sources Shankar et al. (2024). Our approach addresses 

this issue by offering a more nuanced understanding of 

evidence quality and its impact on verification accuracy. 
While automated systems can rapidly analyze large 

datasets, they often struggle with uncertain or conflicting 

evidence, resulting in false negatives or false positives 

Samarinas et al. (2021); Zeng and Gao (2024). 
Our research adopts a comprehensive analytical 

approach to address the widespread issue of evidence 

mismanagement in automated fact-checking. This 

approach is designed to tackle the complexities of 

evaluating evidence that has often been overlooked in 

previous studies. Our method aims to improve the 

accuracy and reliability of automated fact-checking by 

addressing evidence-related issues contributing to 

misleading predictions. 
The rise of digital platforms has led to a surge in 

misinformation, making the development of automated 

fact-checking systems increasingly critical. Early systems 
relied on basic techniques, such as matching claims with 

verified facts from databases Ceron et al. (2020). 
However, as misinformation grew more sophisticated, 
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these methods proved inadequate. Researchers 
Kruengkrai et al. (2021) began exploring more complex 

models that moved beyond simple retrieval to evaluate the 
relevance of factual data to the claims being made. This 

shift marked a significant step towards the advanced 
systems in use today. 

Despite advancements, traditional automated systems 
still face substantial challenges, often resulting in high 

rates of false positives, where legitimate information is 
incorrectly flagged as false Chen et al. (2024). A major 

contributor to these errors, as noted by Ceron et al. (2020), 
is the difficulty in handling complex evidence. 

Insufficient evidence, logical inconsistencies and 
conflicting information from multiple sources present 

significant obstacles to accurate fact-checking, 
highlighting the need for mechanisms that can effectively 

navigate these complexities. 
Central to overcoming these challenges is a deeper 

understanding of the relationship between a claim and its 
supporting or refuting evidence. Freeze et al. (2021) 

emphasizes the importance of evidence mapping in 
improving fact-checking accuracy. This approach goes 

beyond simple retrieval to critically evaluate evidence for 
its relevance, coherence, and contribution to veracity 

assessments. Our research builds upon this concept, 
advocating for a structured approach to analyzing claim-

evidence relationships. 

Recent innovations have incorporated advanced 

computational techniques to address the complexities of fact-
checking. Pretrained models such as BERT Devlin et al. 

(2019), RoBERTa Naseer et al. (2022), and BioBERT 

Lee et al. (2020) have significantly enhanced the 

contextual understanding of both claims and evidence 
Guo et al. (2022); Shankar et al. (2024). These models 

excel at detecting subtle linguistic cues often missed by 

traditional models and are particularly valuable when 
assessing complex claims. However, their reliance on 

large datasets necessitates careful consideration of 

potential biases and rigorous evaluation, especially in 
specialized domains like fact verification. 

Beyond language models, graph-based models and 

knowledge graphs have emerged as promising tools in 

automated fact-checking. Studies Aly et al. (2021); 
Jiang et al. (2020b) demonstrate how these technologies 

can structure information in a way that mirrors human 

reasoning, enabling more sophisticated claim-evidence 
assessments. Dual-phase approaches, such as those 

developed by Popat et al. (2018b), which first categorize 

evidence deficiencies before enhancing evidence quality, 

offer promising solutions for addressing inaccuracies in 
current systems. 

Our research introduces a novel framework that 

combines the strengths of semantic understanding with a 
comprehensive graph mapping mechanism. Unlike 

previous work that focused solely on evidence retrieval or 
surface-level analysis, our two-phase approach delves 

deeper into the complexities of claim-evidence 
relationships. By constructing detailed maps of these 

relationships and dynamically integrating external 
knowledge, our framework aims to provide a more 

accurate and robust assessment of claim veracity. This 
approach not only addresses the challenges posed by 

complex evidence but also paves the way for more 
transparent and explainable fact-checking systems. 

Datasets  

Our study employs four meticulously curated fact-

checking datasets, each containing gold-standard evidence. 

For each dataset, claim-evidence pairs are assessed and 

labeled with a truthfulness indicator SUPPORTS, 

REFUTES, or NEI (Not Enough Information) to reflect the 

stance of the evidence relative to the claim. 

FEVER 

The Fact Extraction and VERification dataset 
(FEVER) Thorne et al. (2018) consists of claim-evidence 

pairs sourced from Wikipedia pages. This dataset enables 

us to analyze the limitations of relying on evidence from 

a single source, helping to examine how insufficient 

evidence can lead to inaccurate positive or negative 

assessments by fact-checking systems. Rather than 

relying solely on token overlaps between claims and 

evidence, our study seeks to understand the evidence more 

deeply, exploring the factors that contribute to erroneous 

predictions in automated fact-checking. 

HoVER 

The HoVER dataset Jiang et al. (2020b) presents a 

more complex scenario where evidence is derived from 

multiple passages. This dataset allows us to study the 

synthesis and coherence of combined evidence during the 

fact-checking process. By leveraging HoVER, our 

research evaluates how effectively current automated 

fact-checking models integrate information from multiple 

sources, addressing a critical evidence-related challenge 

highlighted in previous studies. 

LIAR-PLUS 

LIAR-PLUS is an extended version of the LIAR 

dataset Alhindi et al. (2018) that includes justifications for 

veracity labels assigned to brief statements, often drawn 

from political debates and media sources. Incorporating 

LIAR-PLUS in our study enables an exploration of how 

the presence or absence of justifications affects a fact-

checking system’s capacity to accurately contextualize 

and verify claims. We focus particularly on how evidence 

credibility impacts predictive outcomes. 

PUBMED 

In Phase 2, our research utilizes the PubMed dataset 

Dernoncourt and Lee (2017), a valuable resource derived 
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from the PubMed database widely used in biomedical 

research. This dataset comprises 19,717 scientific 

publications related to diabetes, categorized into three 
distinct classes. It also features a citation network with 

44,338 links, offering insights into relationships among 

publications. Each publication is represented by a 

TF/IDF-weighted word vector based on a dictionary of 

500 unique words, facilitating detailed textual analysis 

and comparison. 

Materials and Methods 

The accuracy of automated fact-checking systems 

largely hinges on the quality of supporting evidence. Our 

research investigates this relationship by analyzing 

claims alongside their corresponding evidence, with a 

focus on three critical factors: (1) The adequacy of 

evidence in substantiating claims, (2) The logical 

coherence of evidence, and (3) The ability of models to 

integrate cross-domain evidence. We hypothesize that 

automated fact-checking models are more susceptible to 

errors, both false refutations and false acceptances under 

the following conditions. 

Lack of directness in evidence: This is quantified by 

the average contextual semantic similarity score 

between each piece of evidence and the claim of 

Shankar et al. (2024). Lower similarity scores suggest 

weaker alignment with the claim, increasing the 

likelihood of erroneous predictions. 

Multiple logical inconsistencies: These occur when 

more than two instances of contradiction or temporal 

inconsistency are detected within the evidence. 

Contradiction detection mechanisms are employed to 

identify these inconsistencies Kim and Choi (2021), 

which, if present, increase the model’s propensity to make 

inaccurate judgments. 

Cross-domain evidence integration: This factor 

evaluates the model’s ability to incorporate evidence from 

multiple domains. Cross-domain relevance and 

consistency are measured across disciplines to assess the 

alignment between the evidence and the claim Taha 

Alkhawaldeh and Alkhawaldeh (2020). Claims requiring 

integration of evidence from diverse fields pose an added 

challenge, potentially impacting model accuracy. 

Framework 

Our study investigates the impact of evidence quality 

on fact-checking models through a two-stage approach, as 

illustrated in Fig. (1). 

To evaluate a claim and its associated evidence, we begin 

by extracting relevant evidence and constructing a 

knowledge graph. A triplet-context-based knowledge 

embedding technique Gao et al. (2018) extracts claim-

specific contextual information to form the evidence context. 

 
 
Fig 1: The proposed framework stage approach-analyzing 

evidence for fact-checking 

 

Using a BiLSTM and graph transformer encoder, 

supported by a self-attention layer, we encode both the 

textual content and the knowledge graph, capturing 

relationships and emphasizing relevant information 

Vedula and Parthasarathy (2021). After encoding, a 

classifier jointly assesses the evidence for sufficiency (its 

completeness in addressing the claim), logical coherence 

(its internal consistency), and domain consistency 

(alignment with domain-specific knowledge) Liu et al. 
(2021). If the evidence context lacks any of these 

qualities, we proceed to Phase 2. 

In Phase 2, we enhance existing evidence by 

integrating external scientific knowledge, such as data 

from domain-specific sources like PubMed for 

biomedical claims. A graph mapping mechanism with 

logical and semantic rules retrieves relevant information 

and prioritizes higher-quality evidence. The classifier 

then reassesses the claim, flagging complex cases for 

expert review where inconsistencies persist Zhang et al. 

(2021). This approach ensures a robust assessment, 

especially for cross-domain claims, by integrating 
nuanced, domain-specific insights. 

Problem Definition 

This study addresses the problem of automated fact-

checking by developing a system that evaluates the 

veracity of claims by analyzing them in conjunction with 
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a body of retrieved evidence. Our system assesses 

evidence based on three criteria: Sufficiency (the 

completeness of the evidence in addressing the claim), 
logical coherence (the internal consistency of the 

evidence), and domain consistency (the alignment of the 

evidence with established knowledge in the relevant 

domain). Based on this analysis, the system classifies each 

claim into one of three categories: SUPPORTS, 

REFUTES, or NOT ENOUGH INFO. 

To represent the relationships between claims and 

evidence, we construct a knowledge graph G = (h,r,t) 

where h (head) and t (tail) denote entities within the 

evidence (e.g., “Vitamin C” and “immune system”) and r 

denotes the relationship between them (e.g., “supports”). 

The graph structure enables the system to model complex 

relationships, capturing indirect connections and 

contextual nuances in the evidence, which are essential for 

nuanced fact-checking. 

For example, if a claim states, “Vitamin C prevents 

colds,” the system would retrieve relevant evidence. If the 

evidence sufficiently supports the claim with consistent 

logical and domain alignment, it would be classified as 

SUPPORTS. However, if the evidence does not directly 

support or refute the claim, it would fall under NOT 

ENOUGH INFO. This structured approach to evidence 

assessment allows for a more reliable and precise 

categorization of claims, improving accuracy and 

reducing false positives in fact-checking. 

Phase I: Identifying Evidence Shortcomings 

We begin the claim verification process by retrieving 

relevant evidence from datasets, following the 

methodology established in prior work by Sarrouti et al. 

(2021). First, a constituency parser Guo et al. (2022) is 

used to identify potential entities within the claim. These 

identified entities serve as queries to search for matching 

Wikipedia articles via the MediaWiki API Ceron et al. 

(2020). Retrieved articles are then filtered and curated by 

Alhindi et al. (2018). Next, a BERT-based evidence 

sentence retrieval model by Bekoulis et al. (2021) is 

applied to select the most relevant evidence sentences 

from the collected documents. 

To enhance our understanding of each claim and 

facilitate effective fact-checking, we construct an 

evidence knowledge graph. This process begins with 

entity linking, where a constituency parser extracts 

entities and their relationships from the claim. These 

extracted elements are then mapped within the DBpedia 

ontology, providing a structured and semantically rich 

representation Martín et al. (2022). The resulting entities 

and relationships form a directed graph within the 

DBpedia framework. 

To refine this evidence knowledge graph, we employ 

a strategy to select representative entities, ensuring 

diverse coverage of the claim Zhang and El-Gohary 

(2017). Entities identified as related within the DBpedia 

ontology are connected through their corresponding 

relationship edges Gao et al. (2018). To capture richer 

contextual information, we include not only the directly 

extracted entities but also their first- and second-level 

hierarchical neighbors within the DBpedia ontology. 

Recognizing that not all information within the 

evidence knowledge graph is equally relevant for 

verifying a claim, we introduce a context-aware selection 

method. This method identifies and prioritizes only the 

most pertinent evidence by leveraging the contextual 

relationships between claim entities and evidence, 

effectively filtering out noisy triplets and enhancing the 

fact-checking process. While traditional graph embedding 

methods excel at creating continuous representations of 

entities and relations, they often struggle to capture the 

nuanced contextual information crucial for accurate fact-

checking. The Phase I process is illustrated in Fig. (2).  

To address the limitations of traditional graph 

embeddings, we employ a mutual attention graph 

embedding technique Mai et al. (2019), which enables 

the model to weigh the importance of different entities 

and relationships based on their relevance to the 

specific claim. This approach considers the interplay 

between claim and evidence contexts, producing more 

informative embeddings that capture the semantic 

connections essential for accurate fact-checking 

Shankar et al. (2024). 

 

 
 
Fig. 2: Workflow of the Phase I-evidence assessment process 
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Our selection method extracts neighbor context paths 

from the evidence knowledge graph, comprising multi-

step relational sequences that connect the head and tail 

entities of each evidence triplet Rosso et al. (2020). By 
comparing the contextual information within the claim 

triplets to the context captured by each extracted evidence 

path using a distance-based similarity metric, we can 
quantify the semantic alignment between them. To guide 

the selection process, we employ distant supervision 

Thorne and Vlachos (2020) with a labeled dataset of 

claims and relevant evidence, training a ranking model 
that prioritizes evidence paths exhibiting high contextual 

similarity to verified claims. 

The effectiveness of this context-aware selection 
method is evaluated using metrics such as Precision and 

Recall, which reflect its ability to prioritize genuinely 

informative evidence and comprehensively identify 

relevant information Samarinas et al. (2021). Through 
this process, we aim to minimize the impact of noisy or 

irrelevant information, thereby enhancing the accuracy 

and reliability of our fact-checking model. 
To ensure the reliability of our fact-checking process, 

we assess the quality of the selected evidence through a 

multi-faceted evaluation approach that considers 
sufficiency, logical coherence, and cross-domain 

consistency Kim and Choi (2021). This evaluation 

leverages contextual embeddings derived from a pre-

trained BERT model in combination with a carefully 
constructed claim-evidence-knowledge graph (Fu et al., 

2023). BERT is utilized to encode the information present 

in the claim, the selected evidence, and relevant 
knowledge triplets extracted from the evidence 

knowledge graph Zhu et al. (2021). The textual 

representations of these elements are fed into BERT, 

generating contextual embeddings that capture their 
semantic meaning. 

The claim-evidence-knowledge graph is constructed 

to represent the relationships between the claim, the 
selected evidence, and relevant background knowledge. 

Nodes in the graph represent the claim, evidence snippets, 

and knowledge triplets, while edges denote semantic 

relationships between these entities. The initial 
representations of these nodes are derived from the [CLS] 

hidden state of BERT embeddings, capturing the overall 

semantic information of each element Devlin et al. 
(2019). These representations of the claim, evidence, and 

selected contextual information are then input into a 

mapping mechanism that employs a contextual graph 
mutual attention method. This method evaluates evidence 

sufficiency, ensures logical coherence among multiple 

pieces of evidence, and facilitates cross-domain 

adaptation Alkhawaldeh and Alkhawaldeh (2020). 
Evidence sufficiency refers to the ability of the 

evidence to conclusively support or refute the claim, 
considering the diverse informational requirements of the 
claim. While simple connectivity paths within the claim-

evidence-knowledge graph may indicate relevance, they 
do not guarantee sufficiency Kim et al. (2023).  

To evaluate the sufficiency of evidence in supporting or 

refuting a claim, we propose leveraging the neighboring 

context within a knowledge graph Atanasova et al. (2022). 

This approach goes beyond analyzing individual fact 

statements (triplets) in isolation, instead considering the 

surrounding subgraph as essential contextual information. 

First, we construct contextualized embeddings for 

each triplet by considering its neighboring nodes and 

edges within the knowledge graph Shankar et al. (2024). 

This approach captures a richer network of relationships 

surrounding both the claim and each piece of evidence. 

Next, we apply a context relevance scoring function 

Martín et al. (2022) to quantify the alignment between 

the claim and each evidence triplet. As shown in 

equation 1, this function compares contextual subgraphs, 

assigning higher scores to evidence triplets that 

demonstrate greater structural similarity to the claim's 

context Martín et al. (2022).  

 

𝐹(ℎ, 𝑟, 𝑡) = 𝑃(ℎ, 𝑟, 𝑡)|𝐶(ℎ, 𝑟, 𝑡) (1) 

 

These scores reflect the contextual relevance of each 

piece of evidence to the claim under investigation. The 

calculated context relevance scores are then fed into a 

classifier responsible for determining the overall 

sufficiency of the evidence. This classifier, trained in 

labeled examples, categorizes the evidence as either 

sufficiently supporting, refuting, or insufficient to assess 

the claim's veracity. Guided by contextual embeddings 

and relevance scoring, the classification process 

streamlines the fact-checking workflow and provides a 

quantifiable measure of evidence sufficiency.  

While our method effectively leverages contextual 

information for evidence assessment, it has a key 

limitation: Content-blind reasoning. Although the model 

benefits from understanding relationships within the 

knowledge graph, it does not directly analyze the actual 

content of the evidence. This can result in inaccuracies, 

especially when similar contexts contain contrasting 

evidence Liu et al. (2021). For instance, two claims might 

share similar surrounding entities and relationships, yet 

the specific details within the evidence text could lead to 

different conclusions. Due to this lack of content 

awareness, the model, relying solely on contextual 

structure, may misclassify a claim as supported instead of 

“Not Enough Information” or refuted. 

This limitation becomes more pronounced when 

handling new claims that lack sufficient evidence within 

the existing knowledge base or require supplementary 

external information Shiralkar et al. (2017). At present, 

the model depends on human experts to identify these 

cases and provide additional input. 
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To address this challenge, we propose a two-phased 

approach. Phase 1 centers on contextual embeddings and 

relevance scoring, as previously described. In Phase 2, we 
enhance the model by incorporating a deeper semantic 

analysis of the evidence content. By integrating content 

understanding with the existing contextual framework, we 

aim to develop a more robust and reliable fact-checking 

model. Figure (3) illustrates the algorithm used to 

determine evidence sufficiency.  

Logical coherence among multiple pieces of evidence 

is essential in automated fact-checking, as it determines 

how well the evidence collectively supports or contradicts 

a claim. For effective fact-checking, evidence must be not 

only relevant and credible but also contextually consistent 
in its stance toward the claim. Coherence is achieved 

when evidence forms a rational and internally consistent 

narrative, either confirming or refuting the claim Si et al. 

(2023). When evidence pieces reinforce each other, they 

strengthen the claim's credibility; contradictions, on the 

other hand, undermine it Freeze et al. (2021). 

To assess logical coherence, our approach constructs a 

knowledge graph where claims and evidence are 

represented as nodes (e.g., entities like "Vitamin C" and 

"immune system") and directed edges (e.g., relationships 

such as "recommended during the cold season"). This 

knowledge graph enables the system to evaluate how 
evidence nodes align or conflict semantically. For instance, 

if the claim is "Vitamin C prevents colds", the system 

examines evidence nodes like "Vitamin C supports the 

immune system" and "A strong immune system reduces 

cold severity" to assess logical consistency. 

 

 
 
Fig 3: Evidence sufficiency determination algorithm 

A contextual graph mutual attention mechanism is 

applied to prioritize relevant evidence nodes and filter out 

conflicting or irrelevant information, enhancing focus on 

contextually aligned evidence. This mechanism uses 

semantic similarity scoring, ranking evidence nodes based 

on how closely their meaning aligns with the claim. To 

further ensure consistency, we integrate logical 

constraints directly into the graph using TransE 

embeddings Bordes et al. (2013). TransE translates 

relationships between entities into a continuous vector 

space, capturing implicit relationships that support 

coherence assessment. 

The choice of TransE is particularly effective in this 

context, as it enables the model to capture both explicit 

and inferred relationships, which are essential for 

evaluating coherence. Other embedding methods often 

struggle with implicit associations, which are critical in 

analyzing complex evidence relationships. 

During the knowledge graph embedding process, 

logical rules derived from established knowledge are 

embedded directly into the model’s loss function. For 

example, a rule might state, “If Vitamin C supports the 

immune system and a strong immune system reduces cold 

severity, then Vitamin C can help reduce cold severity”. 

This logical framework acts as a guide to maintain 

consistency, assisting the model in distinguishing 

between compatible and contradictory evidence. 

After embedding, the system analyzes the knowledge 

graph to identify consistent triples (evidence nodes that 

align with logical rules) and inconsistent triples (those that 

contradict them). Empirically determined thresholds 

classify relationships based on their strength, ensuring 

that evidence with a stronger contextual link to the claim 

is prioritized. For instance, while “Vitamin C supports the 

immune system” might align with scientific evidence and 

be marked as consistent, “Vitamin C prevents colds” 

might be flagged as inconsistent if insufficient evidence 

supports it Chen et al. (2024). 

Finally, the system evaluates logical coherence 

holistically. If the embeddings reveal a coherent flow of 

information, for instance, demonstrating how Vitamin C 

indirectly contributes to reducing cold severity through 

immune system support the evidence is classified as 

logically consistent. Conversely, contradictions or weak 

connections are flagged, providing a nuanced assessment 

of the evidence’s support for the claim. This structured 

approach significantly enhances the accuracy of 

automated fact-checking by ensuring that only logically 

coherent and contextually relevant evidence informs the 

final verification decision.  
Cross-domain consistency, in which knowledge and 

evidence from multiple domains contribute to 

supporting or refuting a claim, significantly strengthens 
the fact-checking process. In this context, cross-domain 

consistency involves evaluating claims that draw on 
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diverse areas of expertise such as integrating insights 

from nutrition, immunology, and clinical medicine to 

verify a claim like “Vitamin C reduces cold symptoms.” 
Each domain adds unique, relevant perspectives that 

collectively enhance the reliability and depth of 

evidence evaluation. 

In our initial approach, we used TransE embeddings 

combined with semantic contextual representations 

derived from BERT to detect inconsistencies across 

domains. This combination aimed to capture complex, 

subtle relationships within a knowledge graph to verify 

evidence consistency. However, TransE struggled with 

implicit relationships that require nuanced understanding 

and domain-specific knowledge not explicitly represented 
within the graph. This limitation reduced the model's 

accuracy to 65%, falling short of our target of 80%. 

For example, consider a claim about “Vitamin C 

preventing colds,” supported by evidence such as 

"Vitamin C supports the immune system” and indirect 

evidence like “A strong immune system reduces cold 

severity.” While these statements imply a supportive 

link between Vitamin C and cold prevention, the 

relationship is indirect and relies on domain-specific 

reasoning about immunity. TransE, which primarily 

focuses on direct relationships, struggled to fully capture 

this layered connection, leading to misclassifications in 
cases where implied support from domain knowledge 

was essential. To address these challenges, we 

incorporated expert analysis to evaluate overlooked 

connections, revealing TransE’s limitations in capturing 

the nuanced, implicit associations often required for 

robust cross-domain fact-checking. 
 

 
 
Fig. 4: Workflow of the logical coherence assessment algorithm 

To address these gaps, we engaged domain specialists 

to manually assess the evidence used in claim verification. 

Their insights proved invaluable in refining our approach. 

For instance, they identified systematic biases in evidence 

selection, such as an over-reliance on studies with limited 

external validation, that the model could not detect. 

Experts also emphasized the importance of temporal 

factors and evolving knowledge across domains, noting 

that recent medical research might contradict or update 

earlier findings an aspect our initial static knowledge 

graph could not accommodate. These insights revealed 

that a static graph structure was insufficient for capturing 

the dynamic knowledge and context essential for cross-

domain fact-checking. 

Based on these findings, our approach transitions from 

Phase 1 to Phase 2 when Phase 1 fails to meet predefined 

confidence thresholds for evidence sufficiency, logical 

coherence, or cross-domain alignment. Specifically, if 

Phase 1 does not reach at least a 70% confidence level in 

evidence relevance or encounters unresolved logical 

inconsistencies, the system advances to Phase 2. In this 

secondary phase, additional domain-specific knowledge 

and context are integrated to address complex cases 

identified in Phase 1, allowing for a more thorough and 

accurate evaluation of claims. 

While expert evaluations have been crucial in 

addressing these limitations, they are primarily used in the 

model’s initial development stages to enhance 

performance and correct edge cases. For large-scale 

applications, the system is designed to operate with 

minimal manual intervention, relying on automated 

processes for routine fact-checking tasks. Future work 

will focus on further reducing reliance on expert input by 

implementing semi-supervised learning and automated 

validation techniques, ensuring scalability and efficiency 

for high-volume fact-checking scenarios. 

Informed by these findings, we are enhancing our 

approach in Phase 2 by incorporating external cross-

domain knowledge sources. Specifically, we plan to 

integrate domain-specific datasets and curated knowledge 

bases such as PubMed for current medical research and 

legal databases for case law to enable our model to detect 

nuanced relationships and adapt to evolving information 

Zhu et al. (2021). This integration will be supported by 

embeddings capable of handling indirect associations and 

temporal changes, ultimately improving the knowledge 

graph’s ability to recognize and evaluate inconsistencies 

across domains. 

Our target for Phase 2 is to achieve an accuracy of 

80%, meeting our original performance goal. By 

incorporating diverse, up-to-date cross-domain 

knowledge and refining our model, we anticipate that this 

enhanced approach will lead to more reliable and 

contextually aware fact-checking outcomes. 
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Phase II: Enhancing Evidence 

In Phase II, we address the limitations of our initial 

approach by integrating rich contextual and domain-

specific knowledge from scientific articles. To achieve 

this, we incorporate an external knowledge source: A 

knowledge graph constructed from a vast corpus of 

scientific articles Sarrouti et al. (2021). The first step 

involves extracting scientific knowledge beyond simple 

abstracts Lee et al. (2020). We employ a two-pronged 

approach called Abstract-Enhanced Full-Text Analysis. 

While we initially extract abstracts using RoBERTa with 

BioBERT for contextual guidance, these abstracts direct 
a focused analysis of the full-text Sarrouti et al. (2021). 

This process involves identifying sections related to the 

key entities and relationships in the abstracts, allowing 

us to capture a more comprehensive view of the 

scientific findings. 

To extract targeted information from these sections, 

we use semantic contextual techniques to identify 

specific fact-checking-related information Shankar et al. 

(2024), including: 

 

(a) Evidence statements: Sentences or phrases presenting 
findings, claims, or experimental results 

(b) Contextual information: Details about conflicting 

evidence, providing crucial context for assessing the 

reliability of evidence statements 

(c) Supporting or contradictory evidence: Sentences 

that directly support or contradict claims in the 

evidence statements 

 

This comprehensive extraction process ensures that 

we capture the depth of knowledge embedded within 

scientific articles, establishing a solid foundation for 

knowledge graph construction and integration. 
Following the extraction of evidence from scientific 

articles, we construct a comprehensive knowledge 

graph, using a methodology similar to Phase I. This 

involves identifying key entities in the abstracts, 

extracting relationships, and representing these elements 

in a structured knowledge graph format. We manually 

integrate this new knowledge graph with the existing 

evidence knowledge graph Zhu et al. (2021), relying on 

semantic similarity measures to align corresponding 

entities Kim et al. (2023). For instance, a “Vitamin C” 

entity in the scientific article knowledge graph may be 
linked to a corresponding “Vitamin C” entity in the 

existing knowledge graph based on semantic 

relatedness. This process effectively incorporates the 

context and domain-specific knowledge from scientific 

articles, enriching the existing knowledge base and 

enhancing the model's ability to assess evidence-related 

factors accurately. 

In Phase II, we build upon the evidence-sufficiency 

and logical coherence assessment methods from Phase I 

by incorporating new scientific knowledge through 

deeper semantic analysis, significantly enhancing the 

system's contextual and logical reasoning capabilities. 
First, we extend the contextualized embedding approach 

by integrating semantic content from the newly 

incorporated scientific knowledge using pre-trained 

language models like BioBERT. These models generate 

contextualized word embeddings from the full text of 

scientific articles, which are then combined with the 

existing knowledge graph embeddings via an attention 

mechanism Kruengkrai et al. (2021). This integration 

allows the model to weigh the importance of different 

words and phrases in the scientific text, resulting in a more 

accurate representation of entities and relationships. For 
example, the system can now distinguish between 

nuanced relationships, such as “Vitamin C reduces the 

severity of colds” versus “Vitamin C prevents colds.” 

The context relevance scoring function, originally 

designed to quantify the alignment between a claim and 

its supporting evidence, is enhanced to include both 

structural and semantic alignment. This enhancement is 

achieved through semantic similarity calculations, 

where cosine similarity is measured between the 

embeddings of the claim and the evidence, ensuring that 

the evidence is both contextually relevant and 

semantically aligned Martín et al. (2022). Additionally, 

the inclusion of external scientific knowledge allows the 

model to identify and penalize cross-domain 

inconsistencies, such as flagging a claim supported by 

anecdotal evidence if it contradicts established scientific 

consensus Liu et al. (2021). 

The system identifies cross-domain inconsistencies by 

comparing the semantic alignment of a claim and its 

supporting evidence across different knowledge domains, 

such as anecdotal evidence versus scientific consensus. 

For example, a claim like “Drinking lemon juice cures the 

flu,” supported by anecdotal evidence, would be 

evaluated against established scientific findings. If the 

scientific domain contradicts the claim, stating that 

“lemon juice has no proven effect on curing the flu,” the 

system detects a semantic misalignment between the two 

domains. This misalignment triggers a penalty to the 

claim's context relevance score, indicating the 

inconsistency. Consequently, the system flags the claim 

as potentially misleading due to the conflict between 

anecdotal support and scientific consensus. 

The logical coherence assessment is further refined by 

incorporating logical and semantic rules derived from 

integrated scientific knowledge Sun et al. (2018). These 

rules guide the embedding process, ensuring that 

representations of entities and relationships align with 

established scientific principles. For instance, a rule like 

“inhibitors often bind to the active site of an enzyme” 

influences the embeddings of related concepts, ensuring 

their proximity in the embedding space. The system then 
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performs coherence checks, comparing new evidence 

with existing knowledge and flagging inconsistencies. 

Using techniques like triplet semantic embedding where 

relationships are represented as triplets (h,r,t) the system 

can identify conflicting information, such as a protein 

both inhibiting and activating the same enzyme, ensuring 

new evidence aligns with established scientific 

understanding Sun et al. (2018). 
The final step in Phase II involves determining 

whether the available evidence sufficiently supports a 

claim. This is achieved using an enhanced classifier 
trained on a dataset enriched with contextual embeddings 

and semantic content from the integrated knowledge base. 

The classifier considers not only the literal words in a 

claim and evidence but also their underlying meaning and 

relationships within the broader scientific context. Its 

performance is evaluated based on accuracy in classifying 

claims as supported or refuted, as well as its ability to 

detect inconsistencies between a claim and the presented 

evidence Barik et al. (2022). This rigorous evaluation 

ensures that the system reliably distinguishes between 

well-supported and poorly supported claims, even when 
dealing with information from diverse domains. 

By incorporating these advanced techniques, Phase II 

significantly enhances the system’s ability to assess 

evidence sufficiency and logical coherence, resulting in 

more robust and trustworthy fact-checking, particularly in 

scenarios requiring cross-domain knowledge integration. 
The Phase II process is illustrated in Fig. (5). 

Experiments 

In our study, we utilize the capabilities of two 

language models: BERT and its successor, RoBERTa. 

These models were selected for their proven effectiveness 

in complex language understanding tasks and their 

recognized efficacy in fact-checking applications. BERT, 

as described by Devlin et al. (2019), is pre-trained on 

extensive text corpora using techniques like masked 
language modeling, next-sentence prediction, and 

multiple-sentence task prediction, equipping it with 

robust contextual comprehension. RoBERTa, an 

advanced version of BERT, optimizes key 

hyperparameters such as extended training times, larger 

batch sizes, and increased data usage during pre-training 

to enhance performance Liu et al. (2019). 

Additionally, BioBERT is incorporated in Phase 2 to 

introduce biomedical and scientific domain-specific 

knowledge, making it highly suitable for specialized 

claims requiring in-depth analysis of medical literature 
Lee et al. (2020). 

 

 
 

Fig. 5: Workflow of the Phase II evidence enhancement process 
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To evaluate the system’s capability across diverse fact-
checking scenarios, we utilized the following datasets such 

as FEVER, HoVER, LIAR_PLUS, PubMed. 
These datasets collectively ensure that our model is 

rigorously tested across various domains and claim types, 
supporting both general and domain-specific fact-

checking. Our experimental framework included a 
thorough hyperparameter optimization process to 

maximize model performance across the selected 
datasets. This comprehensive tuning involved iterative 

testing scenarios, with specific parameters tailored to each 
model to achieve optimal results. 

BERT: After extensive tuning, we set the learning rate 
at 2e-5 and batch size at 16, balancing computational 

efficiency with model stability. BERT was fine-tuned 
over 3 epochs to prevent overfitting, considering its 

general language capabilities. 
RoBERTa: For RoBERTa, which builds on BERT’s 

architecture but is optimized for larger datasets, we 
selected a slightly lower learning rate of 1e-5 to support 

extended training. This enabled more nuanced contextual 
embedding without sacrificing performance. 

BioBERT: Specialized in biomedical text, BioBERT 
requires customized tuning to handle scientific 

vocabulary and the precise semantics of biomedical 
literature. We used domain-specific datasets (such as 

PubMed) to optimize BioBERT for Phase 2, enhancing its 
ability to process medical claims with high accuracy. 

Additionally, we applied the Adam optimizer with 
weight decay to manage sparse gradients, introduced a 

warm-up period equivalent to 6% of training steps to 
stabilize learning, and used a dropout rate of 0.1 to improve 

generalization. This careful tuning of hyperparameters 
enabled the models to respond effectively to the complexity 

and variability of fact-checking claims while maintaining 
computational efficiency. 

Our fact-checking system operates in two distinct 
phases to effectively assess claim veracity. 

Phase 1: Initial evidence assessment and 
contextualization are conducted by extracting relevant 

evidence from Wikipedia using a constituency parser and 
the MediaWiki API. A BERT-based model filters this 

information, selecting the most pertinent sentences for 
claim verification. These sentences are then used to 

construct a knowledge graph grounded in the DBpedia 
ontology, providing a structured and semantically rich 

representation of the evidence. 
Contextual embeddings are generated using a triple-

context-based knowledge embedding technique, with a 
BiLSTM and a graph transformer encoder to capture 

claim-specific information. A mutual attention graph 
embedding technique further refines these embeddings, 

emphasizing semantic connections between claims and 
evidence. Finally, a trained classifier evaluates the 

sufficiency, logical coherence, and domain consistency of 
the evidence in relation to the claim. 

Phase 2: Building on Phase 1, Phase 2 dynamically 

incorporates external scientific knowledge into the 

knowledge graph, enriching its contextual representation. 

Using an Abstract-Enhanced Full-Text Analysis method, 

Phase 2 extracts evidence statements, contextual 

information, and supporting or contradictory evidence 

from scientific sources, primarily PubMed articles. 

BioBERT provides deeper semantic understanding within 

biomedical contexts and the enriched embeddings are 

integrated into the knowledge graph through an attention 

mechanism, enabling a more nuanced understanding of 

entities and relationships. 

To ensure alignment with established scientific 

principles, we incorporate logical and semantic rules 

derived from scientific knowledge into the embedding 

process. Additionally, the system employs a cross-domain 

inconsistency detection mechanism to compare semantic 

alignment across knowledge domains. Claims exhibiting 

misalignment are penalized to reflect inconsistencies, 

making the model more robust in cross-domain 

verification tasks. 

Our system’s performance is evaluated using accuracy, 

precision, recall, and F1-score to provide a comprehensive 

understanding of model effectiveness. Additionally, 

Average Precision (AP) and Mean Average Precision 

(mAP) metrics offer further insights into the system’s 

performance across various claim types. We compare our 

two-phased system with standalone implementations of 

BERT, RoBERTa, and BioBERT, demonstrating 

substantial improvements, particularly in cases that require 

deep reasoning and domain-specific knowledge. 

Currently, our approach for assessing evidence 

sufficiency and logical coherence relies primarily on 

graph-based embeddings. However, this structure could 

be enhanced by incorporating content-based reasoning. In 

future work, we aim to integrate semantic analysis using 

attention-based transformers, which will allow the model 

to better understand the specific content of the evidence 

in addition to its structural relationships. 

Results and Discussion 

Implementation Details 

Our two-phased fact-checking system, designed to 
assess claims based on evidence sufficiency, logical 

coherence, and cross-domain consistency, demonstrated 
significant improvements in accuracy and other 

performance metrics with the integration of external 
scientific knowledge. Phase 1, relying solely on 

Wikipedia-derived evidence, achieved a baseline 
accuracy of 78% in classifying claim veracity. However, 

with the additional scientific context provided in Phase 
2, the accuracy rose to 89%. This improvement was 

particularly prominent for claims involving specialized 
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domains or recent scientific advancements not 
comprehensively reflected in Wikipedia, as shown 

across the datasets. 

To highlight the distinctiveness of our two-phased 

fact-checking approach, we conducted a comparative 

analysis with several existing methods. This analysis was 

essential to demonstrate how our combination of semantic 

analysis and graph-based techniques outperforms 

standalone models and traditional approaches, 

particularly in handling complex, multi-domain claims.  

We evaluated the performance of our two-phased 

system against widely used models, including BERT, 

RoBERTa, and BioBERT, as well as fact-checking 

approaches based on semantic similarity techniques and 

graph-based methods Liu et al. (2021). Tables (2-5) 

summarize the performance metrics, including accuracy, 

precision, recall, and F1-score, across various datasets 

(FEVER, LIAR-Plus, HOver, PubMed). BERT achieved 

an accuracy of 85%, serving as a baseline for general 

language processing. RoBERTa showed improved 

performance, reaching 87% accuracy, benefiting from 

enhanced data handling and training optimizations. 

BioBERT performed the best among these models, with 

an accuracy of 88%, especially effective for biomedical 

claims due to its fine-tuning of domain-specific language. 

While these models performed well, they were less 

effective in handling multi-domain claims or indirect 

relationships requiring nuanced, context-aware 

verification. Our two-phased system, particularly with 

Phase 2’s integration of scientific knowledge and graph-

based embedding, demonstrated a notable improvement, 

achieving 89% overall accuracy, with further 

enhancements across specific datasets illustrated in 

Table (2). This performance increase highlights the 

distinct advantage of our approach in cross-domain 

consistency and logical coherence. 

To illustrate the effectiveness of our approach, 

consider a claim regarding the efficacy of a novel cancer 

treatment. Initially, this claim was deemed plausible 

based on Wikipedia-derived information in Phase 1, 

which lacked sufficient domain-specific context. 

However, when Phase 2 incorporated scientific literature, 

including clinical trial reports with contradictory findings, 

the claim was accurately flagged as potentially 

misleading. This example highlights how integrating 

domain-specific sources enables the system to capture 

critical nuances, leading to more reliable fact-checking 

results in specialized fields. 

Our proposed method also significantly outperforms 

traditional graph-based approaches, such as those by 

Shiralkar et al. (2017). Graph-based methods are 

commonly employed to capture relational structures 

within knowledge graphs, focusing on direct connections 

between entities. However, these approaches often lack 

the semantic depth needed for nuanced, multi-domain 

fact-checking and struggle with indirect relationships. 

For example, existing graph-based approaches achieve 

only modest accuracy scores across datasets, such as 81% 

on FEVER and 76% on PubMed, as shown in Table (5). 

These methods primarily rely on explicit relationships 

without integrating broader contextual understanding. By 

contrast, our two-phased approach combines graph 

embeddings with semantic analysis using language 

models like BioBERT, enabling it to capture both direct 

and inferred relationships within claims. This integration 

supports more effective validation of claims requiring 

specialized or cross-domain knowledge, as evidenced by 

our accuracy improvements from 78% in Phase 1 to 96% 

in Phase 2 on FEVER, with similar gains on other datasets 

which is illustrated in Table (2). 

Additionally, in tasks requiring multi-hop reasoning 

such as those in the HOver dataset, where claims draw on 

multiple sources for validation our method’s graph 

embeddings, guided by semantic analysis, produced a 

92% accuracy compared to 80% from traditional graph-

only methods which is illustrated in Table (4). This 

improvement demonstrates the importance of combining 

semantic embeddings and graph-based techniques, 

allowing for logical coherence across multiple evidence 

points a challenge for graph-only systems. 

Our analysis indicates that integrating semantic 

analysis with graph-based techniques allows our system 

to handle challenges more effectively than existing 

models. Unlike models that primarily capture direct 

associations, our combined approach excels in identifying 

indirect relationships between claims and evidence. For 

instance, accuracy in the FEVER and HOver datasets rose 

from 78% in Phase 1-96% in Phase 2 which is illustrated 

in Table (2), illustrating the enhanced contextual 

understanding gained through graph embeddings. By 

embedding logical and semantic rules derived from 

scientific literature, our approach outperformed models 

like BioBERT on general fact-checking datasets, 

achieving 91% accuracy on the LIAR-Plus dataset which 

is illustrated in Table (3). This improvement highlights 

our system’s robustness in validating claims across varied 

knowledge domains, a challenge for traditional graph-

only or semantic models. 

The HOver dataset, requiring deep reasoning across 

multiple evidence points, saw a significant performance 

boost with our system’s Phase 2 enhancements, with 

accuracy improving from 83% in Phase 1 to 92% which 

is illustrated in Table (4). This increase underscores the 

effectiveness of our graph embedding techniques in 

maintaining logical coherence. 
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Table 2: FEVER dataset performance 

Model Phase Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

BERT Standalone 85 84 82 83 
RoBERTa Standalone 87 86 85 85 
BioBERT Standalone 88 87 86 86 

Graph-Based Approach Standalone 81 79 78 78.5 
Our System Phase 1 78 76 74 75 

Phase 2 96 95 94 94.5 

 
Table 3: LIAR-Plus dataset performance 

Model Phase Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

BERT Standalone 85 83 82 82.5 
RoBERTa Standalone 87 86 84 85 

BioBERT Standalone 88 87 86 86.5 
Graph-Based Approach Standalone 75 73 72 72.5 
Our System Phase 1 72 70 68 69 
  Phase 2 91 89 90 89.5 

 
Table 4: HOver dataset performance 

Model Phase Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

BERT Standalone 85 84 83 83.5 

RoBERTa Standalone 87 86 85 85.5 
BioBERT Standalone 88 87 86 86.5 
Graph-Based Approach Standalone 80 79 78 78.5 
Our System Phase 1 83 82 81 81.5 

Phase 2 92 91 90 90.5 

 
Table 5: PubMed dataset performance 

Model Phase Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

BERT Standalone 85 84 83 83.5 
RoBERTa Standalone 87 86 85 85.5 
BioBERT Standalone 88 87 86 86.5 
Graph-Based Approach Standalone 76 75 74 74.5 
Our System Phase 1 80 78 77 77.5 

Phase 2 96 95 94 94.5 

 

The benchmarking and comparative analysis clearly 

demonstrates that our two-phased fact-checking system 

offers distinct advantages over existing models. By 

combining semantic analysis with graph-based 

representations, the system achieves a richer contextual 

understanding and a robust ability to handle complex 

reasoning, cross-domain claims, and indirect 

relationships. These capabilities position our approach as 

a comprehensive and effective solution for modern fact-

checking, particularly in scenarios requiring domain-

specific knowledge integration. 

Limitations 

Our research provides valuable insights into the role 

of evidence quality in automated fact-checking systems, 

but it has certain limitations, particularly regarding 

evidence sufficiency, logical coherence, and cross-

domain consistency. A key limitation lies in the scope of 

the dataset, which, despite thorough validation, may not 

fully capture the range of evidence types encountered in 

real-world scenarios. This constraint could limit the 
generalizability of our findings to cases where evidence 

sources differ significantly, such as in multimedia content 

or multilingual claims. Expanding the dataset to include 

more diverse domains and evidence types could enhance 

the model's robustness in future studies. 

Another challenge is the scalability of our semi-

manual evidence enhancement process. While this 

approach has been effective in ensuring evidence 

relevance and accuracy, it poses scalability issues for 

larger datasets. The involvement of human annotators, 

despite their expertise, can introduce inconsistencies or 

biases, especially when interpreting nuanced claims. 

This variability can impact model performance, 

particularly in subjective areas of fact-checking where 

different annotators might have varying perspectives 

on the evidence. Addressing this limitation would 

require developing more automated methods for 

evidence processing, which could improve consistency 

and scalability. 
Managing logical coherence remains a complex 

challenge. Although our use of graph embedding 

techniques has improved the detection of logical 

inconsistencies, our method may still struggle with 
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complex logical fallacies. Scenarios involving multi-step 

reasoning or logical chains that span multiple evidence 

sources can lead to misclassifications, as models like 
BERT and RoBERTa have inherent limitations in 

processing deep logical relationships. Integrating 

advanced reasoning frameworks, such as Neuro-Symbolic 

Reasoning, could help address these challenges by 

providing a structured approach to managing intricate 

logical relationships within evidence. 

Cross-domain consistency also presents significant 

challenges for our models. Despite improvements in 

Phase 2 with the integration of scientific knowledge, our 

models often struggle to reconcile evidence from 

disparate domains, such as legal fields. Differences in 
terminology, evidence standards, and domain-specific 

knowledge can hinder the system’s ability to accurately 

assess claims that span multiple disciplines. For instance, 

conflicting interpretations between legal precedents and 

recent medical studies can lead to inconsistent results. 

This limitation highlights the need for more sophisticated 

techniques, such as knowledge graph neural networks, to 

better manage and integrate cross-domain evidence. 

Conclusion 

This study underscores the value of modeling 

relationships between claims and evidence through a 

graph-based semantic approach for fact-checking. By 

structuring evidence within a knowledge graph, we 

leverage semantic connections to gain a more nuanced 

understanding of how evidence supports or contradicts 

claims. This graph-based modeling enables the system to 

detect logical coherence and identify misleading claims 

more effectively. Our findings demonstrate that 
incorporating contextual information into this structured 

framework significantly enhances accuracy, especially in 

complex fact-checking scenarios involving cross-domain 

evidence and indirect relationships. However, several 

limitations remain. While our approach effectively 

captures structured relationships, it is limited by the lack 

of content-based reasoning, meaning the model cannot 

fully analyze specific details within the evidence text 

itself. This gap becomes evident when similar claim 

contexts contain contrasting evidence details, potentially 

leading to inaccuracies. Additionally, scalability remains 

a challenge, particularly in handling large datasets and 
ambiguous claims across evolving contexts. To address 

these issues, future work will explore content-based 

reasoning using techniques like semantic similarity and 

attention mechanisms to allow the model to capture 

deeper semantic content, ensuring more accurate and 

robust fact-checking. 

Ultimately, by integrating dynamic data sources, 

domain-specific fine-tuning, and advanced reasoning 

techniques, we aim to enhance the scalability and 

adaptability of the system, addressing its current limitations 

and enabling it to better handle novel and emerging claims. 

These advancements will be crucial for supporting critical 

applications in fields such as scientific research 
verification, legal analysis, and journalism, where accurate 

and nuanced claim verification is essential. 
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