
     

 

© 2025 Mustafa Majeed Abd Zaid, Ahmed Abed Mohammed and Putra Sumari. This open-access article is distributed under 

a Creative Commons Attribution (CC-BY) 4.0 license. 

Journal of Computer Science 
 

 

 

 

Original Research Paper 

Remote Sensing Image Classification Using Convolutional 

Neural Network (CNN) and Transfer Learning Techniques 
 

1Mustafa Majeed Abd Zaid, 1Ahmed Abed Mohammed and 2Putra Sumari 
 
1College of Technical Engineering, Islamic University, Najaf, Iraq 
2School of Computer Science, University Sains Malaysia, Peneng, Malaysia 

 
Article history 

Received: 17-06-2024 

Revised: 28-07-2025 

Accepted: 02-09-2024 

 
Corresponding Author: 
Ahmed Abed Mohammed 
College of Technical 

Engineering, Islamic 

University, Najaf, Iraq 
Email: a.alsherbe@gmail.com 

Abstract: This study investigates the classification of aerial images 

depicting transmission towers, forests, farmland, and mountains. To 

complete the classification job, features are extracted from input photos 

using a Convolutional Neural Network (CNN) architecture. Then, the 

images are classified using Softmax. To test the model, we ran it for ten 

epochs using a batch size of 90, the Adam optimizer, and a learning rate of 

0.001. Both training and assessment are conducted using a dataset that 

blends self-collected pictures from Google satellite imagery with the 

MLRNet dataset. The comprehensive dataset comprises 10,400 images. 

Our study shows that transfer learning models and MobileNetV2 in 

particular, work well for landscape categorization. These models are good 

options for practical use because they strike a good mix between precision 

and efficiency; our approach achieves results with an overall accuracy of 87% 

on the built CNN model. Furthermore, we reach even higher accuracies by 

utilizing the pretrained VGG16 and MobileNetV2 models as a starting point 

for transfer learning. Specifically, VGG16 achieves an accuracy of 90% and a 

test loss of 0.298, while MobileNetV2 outperforms both models with an 

accuracy of 96% and a test loss of 0.119; the results demonstrate the 

effectiveness of employing transfer learning with MobileNetV2 for classifying 

transmission towers, forests, farmland, and mountains. 
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Introduction 

Research in the crucial area of aerial landscape picture 

categorization has enormous implications for many 

different fields, including but not limited to biodiversity 

conservation, urban planning, agriculture, disaster 

management, climate change studies, military and 

security activities, and environmental monitoring. To 

make well-informed decisions and manage resources 

efficiently, the capacity to correctly categorize and 

understand aerial photos provides priceless insights and 

data (Weiss et al., 2020) categorizing aerial pictures is an 

essential part of environmental monitoring since it allows 

categorization poses significant hurdles. Transmission 

towers, woods, agriculture, and mountains are just a few 

examples of the many land cover categories that 

conventional picture classification algorithms need help 

distinguishing between. This restriction impedes attempts 

to effectively monitor the environment, build cities, and 

handle disasters, all of which depend on accurate data to 

make educated decisions. As part of this process, we must 

track the pace of deforestation, identify instances of illicit 

logging, and evaluate the state of ecosystems. The 

systematic cataloging of plant and land cover types may 

better understand the effects of natural and human-caused 

changes on ecosystems. Developing plans to safeguard 

and maintain natural resources is crucial for guaranteeing 

sustainable development for future generations and this 

knowledge is essential for that purpose (Haq et al., 2024). 

CNN and Transfer Learning technology have developed 

rapidly in recent years; opportunities to improve the 

precision and efficacy of aerial picture categorization are 

emerging due to the fast development of deep learning 

algorithms, especially Convolutional Neural Networks 

(CNNs) and transfer learning. Yet, strong categorization 

systems that can use these cutting-edge methods are 

required due to the complexity and vast amount of aerial 

imagery produced by contemporary remote sensing 

technology. Convolutional neural networks are the most 

commonly used model in deep learning and they have 
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strong self-learning, adaptability, and generalization 

abilities. Image satellite search has applications in 

military surveillance, cruising, map remote sensing, 

traffic control, agricultural farming, and other fields. With 

the development of an external neural network (CNN) in 

deep learning, it has been used in research on image 

classification problems. This study proposes a method for 

classifying aerial landscape images into four distinct 

categories: Transmission towers, forests, farmland, and 

mountains. By leveraging pre-trained models, particularly 

VGG16 and MobileNetV2, we can accomplish efficient 

and accurate classification using a Convolutional Neural 

Network (CNN) architecture. In our Convolutional 

Neural Network (CNN) design, we have used many 

convolutional layers, pooling operations and fully 

connected layers activated with ReLU. 

This project aims to develop a high-performance 

classification system that accurately identifies 

transmission towers, forests, farmland, and mountains. 

Additionally, we aim to explore Convolutional Neural 

Networks (CNNs) performance capabilities for object 

detection in images. We also aim to demonstrate the 

efficacy of machine learning approaches, particularly 

CNNs, in building landscape detection systems. 

Furthermore, we strive to showcase the improvement in 

detection quality achieved by employing deep 

convolutional neural networks. New landscape 

monitoring and analysis possibilities have emerged due to 

the fast development of remote sensing technologies, 

which have generated massive volumes of aerial footage. 
Nevertheless, regarding efficient and accurate 

categorization, these photos’ sheer number and 

complexity pose significant hurdles. Aerial landscapes 

include a wide variety of complex patterns and 

traditional picture categorization algorithms are not only 

sometimes up to the task (Wang et al., 2020), Aerial 

landscape picture classification utilizing state-of-the-art 

deep learning techniques: A challenge that this essay 

seeks to tackle. To that end, we plan to use transfer 

learning and Convolutional Neural Networks (CNN) to 

boost the efficiency and precision of categorization. A 

scalable and reliable method for automatically 

classifying metropolitan areas, woods, bodies of water, 

and agricultural fields from high-resolution aerial 

pictures is the target; in light of these obstacles, this 

study intends to advance aerial picture categorization by 

presenting a more workable method; this, in turn, will 

bolster several applications, including those dealing with 

environmental monitoring, urban planning, and 

catastrophe management. 

Related Work 

This article introduces the ARSIC-HHODTL model 

based on Horse Herd Optimization with Deep Transfer 

Learning. The model is designed to classify automated 

remote-sensing images. The primary objective of ARSIC-

HHODTL is to develop a method for rapidly and 

effectively categorizing aerial images using a 

sophisticated deep-learning model. To begin, we must use 

bilateral gradient filtering to eliminate noise. The 

subsequent procedure involves using EfficientNet-B7 on 

the preprocessed images to extract features. The proposed 

model is evaluated by assessing accuracy, loss, and MSP 

metrics. This validation process is carried out to classify 

and improve the LSTM-based ARSIC-HHODTL model 

using the HHO technique. The model is tested on several 

standard datasets. With a performance rate of 94 percent, 

it surpasses prior techniques, making it very suitable for 

future applications. The approach exhibits a 5% accuracy 

improvement compared to previous methods (Rega and 

Sivakumar, 2024). This study presents a systematic 

approach for developing a model to categorize aerial 

scenes using transfer learning. The ReLU-Based Feature 

Fusion (RBFF) layer selection approach is the foundation 

of the proposed method. Using the properties of the batch 

normalization layer in specific blocks of MobileNetV2, 

RBFF built a model for aerial scene categorization. This 

model employs MobileNetV2, a framework for single-

object picture classification, using feature maps obtained 

from a pre-trained Convolutional Neural Network (CNN). 

ReLU activation layers in the associated blocks determine 

the selection of these blocks. Dimension reduction 

decreases the number of dimensions in a feature vector, 

resulting in a space with decreased dimensionality. The 

reduced feature space trains a nuanced Support Vector 

Machine (SVM) classifier capable of distinguishing 

between aerial photos. The newly developed model 

surpasses previous models in terms of performance on 

various aerial scene datasets while being cost-effective 

(Arefeen et al., 2021). The study effort has introduced a 

novel Multiscale Attention Feature Extraction block 

(MSAFEB). This characteristic renders it very compatible 

with seamless integration with other goods or systems 

since it is designed to be installed and used effortlessly. 

This block utilizes multiscale convolution at two levels, 

using skip connections to enable the production of 

discriminative and salient data at deeper and finer levels. 

The investigation's performance examination, which 

included executing the proposed approach on the AID and 

NWPU benchmark VHR aerial RS picture datasets, 

demonstrates a consistent and reliable performance with a 

minimal standard deviation of 0.002. Furthermore, it has 

an impressive overall recognition rate, up to 94 percent. 

The accuracies of the NWPU dataset 2009 have standard 

deviations lower than 95. The average categorization rate 

in the AID dataset was 85% (Sitaula et al., 2023). 

This article proposes a Spectral-Spatial Paralleled 

Convolutional Neural Network (SSPCNN) for species 

categorization of forest trees using UAV (uncrewed aerial 

vehicle) HSI data. In the SSPCNN configuration, a 1-D-
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CNN is used to learn spectral properties, while a 2-D-CNN 

is employed to extract spatial information. Experimental 

findings show that SSPCNN performs competitively 

compared to other approaches when these characteristics 

are merged and categorized using a softmax classifier 

(Liang et al., 2020). In this piece, we will look at how to 

classify aerial images taken by UAVs efficiently for use in 

disaster response. In it, we examine current methods and 

provide an Aerial Image Database specifically designed for 

Emergency Response applications. Using atrous 

convolutions for multiresolution features, Emergency Net 

is suggested as a lightweight design for convolutional 

neural networks. With a speed boost of up to 20 times and 

an accuracy decrease of less than 1% compared to state-of-

the-art models, this lightweight architecture can function 

effectively on low-power embedded devices (Kyrkou and 

Theocharides, 2020). This research uses the transfer 

learning approach. By transferring the weights of pre-

trained deep neural networks, this approach applies deep 

learning models to tiny data, improving recognition 

accuracy. The research suggests building a UAV dataset 

using various UAV form architectures to enhance detection 

and classification capabilities. Models for detection and 

classification using standard deep convolutional neural 

networks are tested experimentally. The InceptionV3 

model, in particular, benefits greatly from the transfer 

learning approach, as it attains a recall of 96.48% 

(Meng and Tia, 2020). A novel model for high-density 

crowd recognition and classification in aerial photos is 

presented in this Study. It combines VGG16 with a Kernel 

Extreme Learning Machine (KELM). Before using the 

VGG16 technique to extract features, the model goes 

through preprocessing to enhance the quality of the images. 

We use the KELM method as a classifier to determine how 

many people are in the crowd. Through simulations, we can 

see that the VGG16-KELM technique outperforms the 

competition. Improving crowd recognition and 

classification in aerial photos and preventing crowd 

tragedies during complicated mass events are the goals of 

the project (Sivachandiran et al., 2022). 

This study introduces an Optimal Deep Learning Enabled 

Object Recognition and Classification on Drone Imagery 

(ODL-ODCDI) method. Objects in drone photos may be 

identified and classified using this method, which employs 

ensemble transfer learning. It detects objects using YOLO-

v5, a random forest classifier, and a Nadam optimizer. 

According to the experiments, the ODL-ODCDI technique 

achieves better results in object recognition and classification 

on drone photos than other DL models (Adhikari et al., 

2022). Remote-sensing image scene classification is crucial 

for various applications, including forest fire monitoring and 

land-use classification. With the increasing amount of data, 

researchers have accelerated this process. Advances in 

computer vision have allowed for the classification of natural 

images or photographs taken with ordinary cameras. 

Transfer learning, a technique in many fields, has been 

successfully applied to natural image classification using 

convolutional neural network models. The ultimate 

performance is heavily affected by the hyperparameters that 

are used to train the models. Models based on smaller 

remotely sensed datasets perform worse than those trained 

on bigger, more general datasets of natural images. However, 

this doesn’t diminish the usefulness of transfer learning for 

scene categorization using distant sensing (Lima and 

Marfurt, 2019). This study showcases a dataset using a 

transfer learning technique based on deep learning sub-

topics, using the Fire Luminosity Airborne-based Machine 

Learning Evaluation. The dataset included deep learning 

methods, including InceptionV3, DenseNet121, 

ResNet50V2, NAS Net Mobile, and VGG-19, as well as 

mixed approaches like Support Vector Machine, Random 

Forest, Bidirectional Long Short-Term Memory and Gated 

Recurrent Unit. When assessing performance, the 

DenseNet121 model was 97.95% accurate and the transfer 

learning model was 99.32% accurate. This method might 

greatly improve forest fire detection and reaction times (Reis 

and Turk, 2023). This study proposes a Transfer Learning 

(TL) methodology. The process uses a classification model 

trained in the CONUS to determine crops grown in different 

parts of the world. They used harmonized data from Landat-

8 and Sentinel-2 and the study trained on a collection of 

CONUS and NDVI time series pixels with high confidence. 

Three test locations were utilized to train and implement 

Random Forest (RF) classification models: Hengshui in 

China, Alberta in Canada, and Nebraska in the USA. 

Utilizing TL with NDVI time series throughout the growth 

season yielded overall classification accuracies of 97.79, 

86.45, and 94.86%. On the other hand, LO could surpass TL 

in classification accuracy faster. In areas lacking training 

samples, this research offers new possibilities for crop 

categorization (Hao et al., 2020). 

This study introduces landslide detection and 

classification techniques using Distant Domain Transfer 

Learning (DDTL). It improves data extraction by 

introducing scene categorization satellite images and an 

Attention Mechanism (AM-DDTL). This research compares 

Convolutional Neural Networks (CNNs), pre-trained 

models, and DDTL on 177 samples taken from the 

Longgang study region. Based on the testing findings, DDTL 

outperforms regular CNN in detection and achieves 94% 

classification accuracy, which is 7% better than the standard 

DDTL. When identifying and categorizing possible 

landslides in various catastrophe zones, the AM-DDTL 

algorithm performs better than conventional CNN 

approaches (Qin et al., 2021). This study developed a deep 

land structure model using satellite imagery data from 

MLRSNet. The model compared three architectures: CNN, 

ResNet-50, and Inception-v3. The CNN model achieved the 
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highest accuracy of 94.8%, outperforming the other models. 

The CNN model demonstrated exceptional accuracy, recall, 

and F1 scores, highlighting its potential in scene 

understanding and efficient land structure identification from 

satellite imagery (Abd Zaid et al., 2024). 

This article suggests a categorization strategy to 

enhance traffic management and road safety by combining 

Convolutional Neural Networks (CNNs) with transfer 

learning. The system uses a CNN architecture consisting of 

24 convolution layers and eight fully connected layers, 

which is trained using a dataset consisting of 7616 pictures. 

InceptionV3 performed the best during the validation 

phase, with a 98.9% accuracy rate. During testing, the 

suggested CNN model achieved an accuracy of 94.4 % and 

during validation, it hit 95.1% (Abd Zaid et al., 2025). 

Materials and Methods 

Our methodology consists of a set of phases such as 

dataset description, preprocessing, classification models, 

and Hyperparameters tunning, as shown in Fig. (1). 

Phase 1: Dataset Description 

In this phase, we will explain the dataset in detail. Our 

model’s dataset is a valuable combination of two sources. 

MLRSNet (Qi et al., 2020) and self-collected data 

using maps, as shown in Fig. (2). This comprehensive 

dataset comprises 10,400 images and encompasses four 

distinct landscapes: Transmission towers, Forests, 

Farmlands, and Mountains. These landscapes are 

classified into four classes, forming the basis of our 

classification task. By incorporating MLRSNet data and 

our self-collected data, we aim to create a robust and 

diverse dataset that accurately represents the real-world 

scenarios our model will encounter. The MLRSNet data 

provides a foundational set of images with reliable labels. 

At the same time, our self-collected data, obtained 

through extensive mapping efforts, supplements the 

dataset with additional samples and enhances its diversity. 

 

 
 
Fig. 1: Block diagram of study 

Phase 2: Preprocessing 

In this phase, we will show a preprocessing set applied to 

the image before the classification. 

Resizing Image 

Essential preprocessing steps include resizing the image 

while preserving its aspect ratio (Talebi and Milanfar, 2021), 

stretching it to suit a different size, and changing its 

dimensions. Every picture in our collection was 

automatically reduced to 224×2243 pixels. The raw images 

gathered were different proportions and sizes than the 

MLRSNet dataset. This was revealed in a visual inspection 

of the photographs’ aspect ratios. We will not crop the 

picture. We will crop the image on the left and right sides to 

create a square when the width exceeds the height. If the 

width is smaller than the height, we will crop and return the 

top and bottom portions of the picture as a square. The 

resulting resized photos will have a resolution of 2242243 

to ensure that each image is represented by three color 

channels (red, green, and blue). The samples for each class 

in the dataset are shown in Fig. (3). 
 

 
 
Fig. 2: Dataset of study 
 

 
 
Fig. 3: Samples of dataset 
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Image Augmentation 

Using image-augmentation techniques, we were able to 

expand the dataset. One typical approach to enhancing the 

general-isolation Model’s performance is to include data 

variations via image augmentation (Shorten and 

Khoshgoftaar, 2019). Specifically, the number of photos via 

data augmentation. 

Encoding 

Alters the representation of values. Ordinal 

encoding is another name for label encoding when 

working with categorical data. Each dataset category is 

assigned A unique integer value during encoding 

(Potdar et al., 2017). This method determines the input 

and filter weights by performing the dot product to 

convert convolutional filters. Using these methods, the 

network can examine the input picture and retrieve 

beneficial characteristics and geographical data 

(Mohiuddin et al., 2021). 

Split Data 

To ensure practical model training and evaluation 

(Sugali et al., 2021), we have divided our dataset into 

three subsets: Sets of training, validation, and testing. 

70% of the photos are in the training set, with 15% each 

in the validation and test sets. Through this partitioning, 

we can train our model on a substantial subset of the data, 

refine it using the validation set, and evaluate its efficacy 

on the separate test set. 

Stratification 

This is a way to guarantee that different data subsets 

maintain the same distribution of dataset classes. For 

classification tasks, where biassed models might arise from 

an unequal class distribution, this was executed during the 

split to guarantee that each dataset batch had the same 

number of photos for each class. 

Phase 3: Classification Models 

In this phase, we will present the classification models 

that we used. 

Convolutional Neural Network (CNN) 

It is a deep learning model developed specifically for 

handling datasets with a grid pattern, such as photographs. 

It has several layers, including fully connected, pooling, 

and convolutional. CNNs use the idea of convolution to 

their advantage, where small filters are applied to local 

regions of the input data to extract meaningful features. 

These features are then progressively learned and 

aggregated through pooling operations, reducing the 

spatial dimensions. The learned features are then flattened 

and fed into fully connected layers for classification or 

regression (LeCun et al., 2015). CNNs excel at capturing 

hierarchical patterns in images as the convolutional layers 

learn to detect low-level features like edges and gradually 

learn higher-level features. With their ability to 

automatically learn relevant features, many computer 

vision tasks, such as picture segmentation, object 

identification, and classification, have successfully 

used CNNs. 

The architecture of CNN: To successfully categorize 

pictures with input images with dimensions of 

2242243, our suggested CNN architecture uses 

convolutional layers with varying filter sizes, stride 

values, and pooling operations. A 77 convolutional layer 

adds 64 filters to the model’s initialization. To keep the 

spatial dimensions intact, this layer uses the same padding 

and a stride of 2 to sample down the feature maps. Next, 

we have the max pooling layer, decreasing the spatial 

dimensions while keeping crucial information. It has a 

pool size of 33 and a stride of 2. The same padding is 

used to retain spatial information in a second convolutional 

layer with 128 33 filters, as seen in Figs. (4-5). After that, 

the feature maps are down-sampled using an additional 

max pooling layer. To capture and extract increasingly 

complex characteristics from the pictures, the following 

convolutional layers use 256 33 filters. 

An additional max pooling layer is included after the 

fourth convolutional layer to reduce the spatial 

dimensions further and enable the model to concentrate 

on the crucial characteristics. The following feature maps 

are flattened to convert the multi-dimensional 

representations into a one-dimensional vector, which 

increases the model’s capacity. Two completely 

connected layers, each having 512 neurons activated by a 

Rectified Linear Unit (ReLU), are then linked to this 

vector. The ReLU activation function facilitates the 

model’s learning of intricate feature relationships by 

introducing non-linearity. 
 

 
 
Fig. 4: Convolutional neural networks architecture 



Mustafa Majeed Abd Zaid et al. / Journal of Computer Science 2025, 21 (3): 635.645 

DOI: 10.3844/jcssp.2025.635.645 

 

640 

 
 
Fig. 5: Convolutional neural networks diagram 

 

Half-rate dropout layers are added after every fully 

connected layer to avoid overfitting and enhance 

generalization. These layers randomly deactivate specific 

neurons throughout training to improve the model’s 

generalizability to new data. This makes the model less 

dependent on any one neuron. 

Last, four neurons are in the output layer, equal to the 

number of classes in the classification job. The chance of 

the input picture belonging to a particular class is 

represented by probability scores, which are generated by 

applying the SoftMax activation function to each class. 

Finding a happy medium between model size and 

complexity is what this model provides. Adding dropout 

layers after the fully connected layers improves its 

capacity to learn complicated features by reducing 

overfitting that may occur due to complexity. Neurons 

may be inactivated at random during training via dropout. 
Optimizer and Learning Rate: We used the Adam 

optimizer with different parameters to train our network 

in our model. The Adam optimizer is famous for deep 

learning tasks due to its adaptive nature and efficient 

gradient descent algorithm (Kingma and Ba, 2014). It 

combines the advantages of two other optimization 

methods, Ada Grad (Duchi et al., 2011) and RMS Prop, 

to provide effective weight updates during training 

(Tieleman and Hinton, 2012). 

During training, the optimizer modifies the model’s 

weights at a step size determined by the learning rate 

parameter. It controls the model’s convergence and 

performance. We want to compromise stability and agility 

during optimization, so we set the learning rate at 0.001. 

More steady convergence is possible with a lower 

learning rate, although training may be slower. While a 

higher learning rate helps expedite training, it also runs 

the danger of exceeding the ideal answer. 

A categorical cross-entropy loss function, appropriate 

for multi-class classification problems, is used during 

training. This loss function evaluates how different the 

actual class labels are from the expected class probability. 

To minimize the categorical cross-entropy loss, our model 

gives more weight to the suitable classes and less to the 

wrong ones. 

To train our model, we choose a batch size of 90. This 

size dictates how many samples are processed before the 

optimizer updates the weights. Memory and processing 

performance are both improved by training in batches. 

In addition, there are ten epochs of training the model, 

which represents the total number of times the training 

dataset is traversed. 

By measuring the percentage of adequately identified 

samples, we may evaluate the model’s performance 

during training by looking at the accuracy metric. To keep 

an eye out for any problems with overfitting or 

generalization, we also consider the model’s performance 

on a second validation dataset (x val, y val). We maximize 

the model’s performance and get precise categorization 

using those parameters. 

Transfer Learning 

A pre-trained model is used as a base in transfer 

learning. However, only the lower layers are typically 

frozen or kept fixed instead of using the entire model. In 

contrast, the upper layers are modified or replaced with 

new classifier layers. This transfer learning approach 

allows us to benefit from the general knowledge and 

patterns learned by the base model, which can be applied 

to various related tasks. The model can improve 

performance and efficiency in the new application by 

reusing and adapting the learned features, even with a 

smaller dataset. Here, we use vgg16 (Simonyan and 

Zisserman, 2014) and MobileNetV2 (Sandler et al., 2018) 

transfer learning models to compare the actheiracy with 

our developed CNN model del. 
We decided to freeze the layers using the transfer 

learning model and add a new classifier. This decision 

was based on the computation needs required to train 

additional layers of the transfer learning model and 

considerations related to our dataset size and the 

model’s choices. 

VGG16: Thirteen convolutional layers and three fully 

linked layers comprise the VGG16 architecture. VGG16 

employs tiny 3x3 filters all around the network to learn 

more specific characteristics. Additionally, max-pooling 

layers are used in the design to decrease spatial 
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dimensions and enhance the model’s capacity to deal with 

fluctuations in object location (Alshammari, 2022). Filters 

in the convolutional layer increase in size from 64 in the 

first layer to 512 in the later layers sequentially. When 

input pictures are stacked using convolutional layers, 

VGG16 can learn intricate hierarchical representations. 

The feature maps are then flattened and sent through 

three fully connected layers, each with 4096 neurons, after 

the convolutional layers. These layers provide the 

classifier and final predictions for the picture classes. By 

using the rectified linear unit (ReLU) activation function 

network-wide, non-linearity is brought about. 

Many computer vision applications use VGG16 

because of its well-known simplicity and efficacy. On the 

other hand, training VGG16 may be memory and 

computationally intensive because of all the parameters. 

This leads to its frequent use as a feature extractor or task-

specific transfer learning optimization tool. 

MobileNetV2: is a Convolutional Neural Network 

(CNN) architecture explicitly designed for mobile and 

resource-constrained devices. It is an evolution of the 

original MobileNet architecture developed by Google. 

MobileNetV2 aims to achieve high performance while 

maintaining efficiency and low computational cost 

(Gulzar, 2023). 

The critical feature of MobileNetV2 is the use of 

depth-wise separable convolutions. Inverted residuals use 

a combination of 1x1 and 3x3 convolutions to efficiently 

capture low-level and high-level features. Linear 

bottlenecks help preserve the information flow and reduce 

the model’s memory footprint. 

An essential aspect of MobileNetV2 is using a 

technique called width multiplier. This parameter controls 

the number of filters in each layer, adjusting the model’s 

width based on the available resources. By varying the 

width multiplier, MobileNetV2 can trade-off between 

model size and performance, making it adaptable to 

different devices and applications. 

Results and Discussion 

We used our landscape dataset to experiment. On the 

first pass, we partitioned the dataset into three sections: 

Training (70%), validation (15%), and testing (15%). 

Iteratively, training and validation take place 

simultaneously. To train a reliable model, we monitored 

the impact of various factors and fine-tuned them 

accordingly. This model is implemented using the 

Python library” Keras” on a laptop with an AMD 

RADEON RYZEN 5, 16 GB of RAM, and 400 GB of 

disk space, using Jupiter Notebook. 

Results 

We will show all the results that we obtained from our 

experiment. 

Effects of Hyper-Parameters 

Effect of batch size: The batch size is a 

hyperparameter that determines the number of samples 

the model processes in each training iteration. It impacts 

the training time and the model’s ability to generalize to 

unseen data (Goodfellow et al., 2016). Training with 

larger batches generally results in faster training times 

since the model processes more samples in each iteration. 

However, this may require more memory to store the 

activations and gradients, which can be a limitation for 

resource-constrained systems (Yoshua, 2013). 

To show the effect of the batch size on our model, 

we chose different values of batch size 90, 50, and 15, 

conserving the same learning rate and epoch on the first 

model we built from scratch. The results are shown in 

Table (1). 

Effect of number of epochs: When training a machine 

learning model, the amount of epochs is measured by how 

many times the entire dataset is transferred forward and 

backward. Many iterations, each handling a separate data 

batch, make up an epoch. The frequency with which the 

model updates its weights using the training data is 

controlled by the hyperparameter known as the number of 

epochs. The model can pick up on more intricate patterns 

as the training time increases, leading to better 

performance. However, overfitting may happen if the 

model needs to be more specific to the data used for 

training. Underfitting, in which the model misses important 

data patterns, may occur if training for insufficient epochs. 

Considerations such as dataset size, model complexity, and 

computing resources dictate the ideal number of epochs. 

Using the same batch size and learning rate on the VGG16 

transfer learning model, we tested three alternative epoch 

values (10, 4, 2) to demonstrate his effects. You can see the 

results in Table (2). 

 
Table 1: Batch effect on the model accuracy 

Batch size Final Training accuracy Final Validation accuracy 

90 96.6% 84.1% 

50 91.1% 82.7% 

15 91.6% 82.1% 
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Table 2: Epochs number effect on the model accuracy 

Epoch number  Final training accuracy Final validation accuracy 

10  91.3% 87.6% 

4  90.0% 89.2% 

2  90.8% 88.2% 
 

We can observe that modifying the batch size affects the 

model’s accuracy, depending on the dataset and the specific 

model used. In our case, a batch size of 90 resulted in the 

highest accuracy. 

Changing the number of epochs resulted in varying levels 

of accuracy. In this case, the model with an epoch size of 10 

achieved the highest accuracy. 

Effect of learning rates: One of the hyperparameters used 

to train a model is the learning rate, which controls the 

increment by which the parameters are updated. It can 

significantly affect the model’s convergence and 

performance as a critical training component. More 

comprehensive parameter updates are possible with a greater 

learning rate, which may speed up convergence but increase 

the likelihood of overshooting the ideal solution. In contrast, 

more minor updates are produced by a lower learning rate, 

which can lead to slower convergence but may help the 

model to converge to a more precise solution. Selecting an 

appropriate learning rate involves balancing convergence 

speed and accuracy. To display the effect of the learning rate, 

we selected three different learning values, 

0.01,0.001,0.0001, and applied them to our last model, 

MobileNetV2, conserving the same batch size and epoch. 

The results are shown in Table (3). 

According to Table (3) the best accuracy for this 

model was achieved by applying a learning rate of 0.0001. 

Models Validation Accuracy and Loss Comparison 

In Fig. (6) we can see that our proposed model performs 

less effectively compared to the two-transfer learning 

models. Among the models evaluated, MobileNetV2 

exhibited the highest performance. 
 

 

 
 
Fig. 6: Validation accuracy and loss comparison 

 

Table 3: Learning rate effect on the model accuracy 

Learning 

rate 

 Final training  

accuracy Final validation accuracy 

0.01  97.7% 95.1% 

0.001  00.0% 95.6% 

0.0001  99.5% 95.5% 

 
Table 4: Comparison of different models’ accuracy 

Model Test accuracy Test loss 

Proposed model 87.2% 0.363988041 

MobileNetv2 96.1% 0.119421191 

Vgg16 90.6% 0.297783434 

 

We can compare the three models' validation accuracy 

and loss using the fixed value of 90 batch size, ten epochs, 

and a learning rate of 0.001. 

Discussion 

For the testing step, we utilized a batch size of 90, ran 

the model for ten epochs, used the Adam optimizer, and 

set the learning rate to 0.001. Table (4) shows that the 

proposed model achieved a test accuracy of 87.2% and a 

test loss of 0.364. Although the accuracy is satisfactory, 

there is room for improvement, particularly when 

comparing it to MobileNetV2 and VGG16. 

MobileNetv2 achieved a significantly higher test 

accuracy of 96.2% and a lower test loss of 0.119. This 

indicates that MobileNetv2 performs better than the 

proposed model in terms of accuracy and 

generalization. With its efficient architecture, 
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MobileNetv2 is suitable for our specific task. VGG16 

achieved a test accuracy of 90.6% and a test loss of 

0.298. While VGG16 performs reasonably well, 

accuracy needs to improve compared to 

MobileNetV2.The VGG16 architecture may be too 

complex for our specific task, but it is worth 

considering. 

Overall, MobileNetV2 outperforms both the proposed 

model and VGG16 in terms of test accuracy and loss. It 

strikes a good balance between accuracy and efficiency, 

making it a suitable choice. The proposed model 

demonstrates reasonable performance but has room for 

improvement. While VGG16 may not be as accurate as 

MobileNetV2, it can still be valuable in more complex 

feature extraction scenarios. 

Conclusion and Future Work 

In conclusion, this study uses deep learning techniques 

to classify aerial landscape images by combining 

MLRSNet and self-collected data. Our proposed 

Convolutional Neural Network (CNN) architecture and 

transfer learning models VGG16 and MobileNetV2 were 

evaluated for landscape classification. Transfer learning 

involves utilizing a pre-trained model and adapting it for a 

specific task by modifying or replacing the upper layers. 

VGG16, known for its simplicity and effectiveness, 

performed reasonably well, while MobileNetV2, designed 

for efficiency on resource-constrained devices, 

outperformed both the proposed model and VGG16 

regarding accuracy and loss. 

Our findings highlight the effectiveness of transfer 

learning models, particularly MobileNetV2, for 

landscape classification. These models balance 

accuracy and efficiency, making them valuable choices 

for real-world applications. The proposed model 

demonstrates reasonable performance and can be 

further optimized to enhance accuracy. Further 

research and experimentation can focus on improving 

the proposed model or exploring other transfer learning 

architectures tailored to specific landscape 

classification tasks; adjusting hyperparameters and 

layers can lead to improved accuracy and performance. 

Acknowledgment 

We appreciate the efforts of the Editorial team in 

reviewing and editing this study. Thank you to the 

Publisher for the support in the publication of this article. 

Funding Information 

This study was funded by the Islamic University in 

Najaf, Iraq. 

Author’s Contributions 

Mustafa Majeed Abd Zaid: Wrote related works, 

and also conceived and designed the block daigram of 

methodology. 

Ahmed Abed Mohammed: Wrote introduction and 

some methodology and chapter four. 

Putra Sumari: Supervisor and contributes to proof 

the article and do experiments. 

Ethics 

This article is original and has never been published 

before. All Authors have reviewed and approved the piece 

and the corresponding author states that there are no 

ethical considerations. 

References 

Abd Zaid, M. M., Mohammed, A. A. & Sumari, P. (2024). 

Classification of Geographical Land Structure Using 

Convolution Neural Network and Transfer Learning. 

Journal of Computer Science, 20(12), 1580-1592. 

https://doi.org/10.3844/jcssp.2024.1580.1592 

Abd Zaid, M. M., Mohammed, A. A., & Sumari, P. 

(2025). Classification of road features using 

convolutional neural network (CNN) and transfer 

learning. International Journal of Computing and 

Digital Systems, 17(1), 1–12.  

 https://doi.org/10.12785/ijcds/1571031764  
Adhikari, N., Behera, N. R., E, V. R., Pimo, Er. S. J., 

Chaturvedi, V., & Tripathi, V. (2022). Modeling of 

Optimal Deep Learning Enabled Object Detection 

and Classification on Drone Imagery. 2022 

International Conference, 303–309. 

 https://doi.org/10.1109/icaiss55157.2022.10010957 

Alshammari, A. (2022). Construction of VGG16 

Convolution Neural Network (VGG16_CNN) 

Classifier with NestNet-Based Segmentation 

Paradigm for Brain Metastasis Classification. 

Sensors, 22(20), 8076–8083. 

 https://doi.org/10.3390/s22208076 

Arefeen, M. A., Nimi, S. T., Uddin, Md Yusuf Sarwar, & 

Li, Z. (2021). A Lightweight Relu-Based Feature 

Fusion for Aerial Scene Classification. 2021 IEEE 

International Conference, 3857–3861. 

 https://doi.org/10.1109/ICIP42928.2021.9506524 

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive 

Subgradient Methods for Online Learning and 

Stochastic Optimization. Journal of Machine 

Learning Research, 12(7), 2121–2159. 

Goodfellow, Ian, Bengio, Yoshua, & Courville, Aaron. 

(2016). Deep learning. 

https://doi.org/10.1109/icaiss55157.2022.10010957
https://doi.org/10.3390/s22208076
https://doi.org/10.1109/ICIP42928.2021.9506524


Mustafa Majeed Abd Zaid et al. / Journal of Computer Science 2025, 21 (3): 635.645 

DOI: 10.3844/jcssp.2025.635.645 

 

644 

Gulzar, Y. (2023). Fruit Image Classification Model 

Based on MobileNetV2 with Deep Transfer Learning 

Technique. Sustainability, 15(3), 1906. 

 https://doi.org/10.3390/su15031906 

Hao, P., Di, L., Zhang, C., & Guo, L. (2020). Transfer 

Learning for Crop Classification with Cropland Data 

Layer Data (CDL) as Training Samples. Science of 

The Total Environment, 733, 138869. 

 https://doi.org/10.1016/j.scitotenv.2020.138869 

Haq, B., Ali Jamshed, M., Ali, K., Kasi, B., Arshad, S., 

Khan Kasi, M., Ali, I., Shabbir, A., Abbasi, Q. H., 

& Ur-Rehman, M. (2024). Tech-Driven Forest 

Conservation: Combating Deforestation with 

Internet of Things, Artificial Intelligence, and 

Remote Sensing. IEEE Internet of Things Journal, 

11(14), 24551–24568. 

 https://doi.org/10.1109/jiot.2024.3378671 

Kingma, D. P., & Ba, J. (2014). Adam: A Method for 

Stochastic Optimization. Machine Learning Cs.LG. 

https://doi.org/10.48550/arXiv.1412.6980 

Kyrkou, C., & Theocharides, T. (2020). EmergencyNet: 

Efficient Aerial Image Classification for Drone-

Based Emergency Monitoring Using Atrous 

Convolutional Feature Fusion. IEEE Journal of 

Selected Topics in Applied Earth Observations and 

Remote Sensing, 13, 1687–1699. 

 https://doi.org/10.1109/jstars.2020.2969809 

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep 

learning. Nature, 521(7553), 436–444. 

 https://doi.org/10.1038/nature14539 

Liang, J., Li, P., Zhao, H., Han, L., & Qu, M. (2020). 

Forest Species Classification of UAV Hyperspectral 

Image Using Deep Learning. 2020 Chinese 

Automation Congress, 7126–7130. 

 https://doi.org/10.1109/cac51589.2020.9327690 

Lima, R. P. de, & Marfurt, K. (2019). Convolutional 

Neural Network for Remote-Sensing Scene 

Classification: Transfer Learning Analysis. Remote 

Sensing, 12(1), 86–201. 

 https://doi.org/10.3390/rs12010086 

Meng, W., & Tia, M. (2020). Unmanned Aerial Vehicle 

Classification and Detection Based on Deep 

Transfer Learning. 2020 International Conference 

on Intelligent Computing and Human-Computer 

Interaction (ICHCI), 280–285. 

 https://doi.org/10.1109/ichci51889.2020.00067 

Mohammed, A. A., & P, Sumari. (2024). Classification 

of Road Features Using Convolutional Neural 

Network (CNN) and Transfer Learning. 

International Journal of Computing and Digital 

Systems, 16(1), 1–11. 

Mohiuddin, M., Islam, Md. S., & Kabir, Md. H. (2021). 

Performance Analysis of Bearing Fault Diagnosis 

Using Convolutional Neural Network. 2021 IEEE 

4th International Conference, 1–6. 

 https://doi.org/10.1109/gucon50781.2021.9573710 

Potdar, K., Pardawala, T. S., & Pai, C. D. (2017). A 

Comparative Study of Categorical Variable 

Encoding Techniques for Neural Network 

Classifiers. International Journal of Computer 

Applications, 175(4), 7–9. 

https://doi.org/10.5120/ijca2017915495 

Qi, X., Zhu, P., Wang, Y., Zhang, L., Peng, J., Wu, M., 

Chen, J., Zhao, X., Zang, N., & Mathiopoulos, P. T. 

(2020). MLRSNet: A Multil Label high Spatial 

Resolution Remote Sensing Dataset for Semantic 

Scene Understanding. ISPRS Journal of 

Photogrammetry and Remote Sensing, 169, 337–350. 

https://doi.org/10.1016/j.isprsjprs.2020.09.020 

Qin, S., Guo, X., Sun, J., Qiao, S., Zhang, L., Yao, J., 

Cheng, Q., & Zhang, Y. (2021). Landslide 

Detection from Open Satellite Imagery Using 

Distant Domain Transfer Learning. Remote Sensing, 

13(17), 3383–3548. 

https://doi.org/10.3390/rs13173383 

Rega, M., & Sivakumar, S. (2024). Enhancing Remote 

Sensing Image Classification using Horse Herd 

Optimization with Deep Transfer Learning Model. 

2024 International Conference, 200–205. 

 https://doi.org/10.1109/iccrobins60238.2024.10534008 

Reis, H. C., & Turk, V. (2023). Detection of Forest fire 

Using Deep Convolutional Neural Networks with 

Transfer Learning Approach. Applied Soft 

Computing, 143, 110362. 

 https://doi.org/10.1016/j.asoc.2023.110362 

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & 

Chen, L.-C. (2018). MobileNetV2: Inverted 

Residuals and Linear Bottlenecks. 2018 IEEE/CVF 

Conference, 4510–4520. 

 https://doi.org/10.1109/cvpr.2018.00474 

Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on 

Image Data Augmentation for Deep Learning. In 

Journal of Big Data (Vol. 6, Issue 1, pp. 1–48). 

 https://doi.org/10.1186/s40537-019-0197-0 

Simonyan, K., & Zisserman, A. (2014). Very Deep 

Convolutional Networks for Large-Scale Image 

Recognition. 

Sitaula, C., Aryal, J., & Bhattacharya, A. (2023). A Novel 

Multiscale Attention Feature Extraction Block for 

Aerial Remote Sensing Image Classification. IEEE 

Geoscience and Remote Sensing Letters, 20, 1–5. 

 https://doi.org/10.1109/lgrs.2023.3312643 

https://doi.org/10.3390/su15031906
https://doi.org/10.1016/j.scitotenv.2020.138869
https://doi.org/10.1109/jiot.2024.3378671
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1109/jstars.2020.2969809
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/cac51589.2020.9327690
https://doi.org/10.3390/rs12010086
https://doi.org/10.1109/ichci51889.2020.00067
https://doi.org/10.1109/gucon50781.2021.9573710
https://doi.org/10.5120/ijca2017915495
https://doi.org/10.1016/j.isprsjprs.2020.09.020
https://doi.org/10.3390/rs13173383
https://doi.org/10.1109/iccrobins60238.2024.10534008
https://doi.org/10.1016/j.asoc.2023.110362
https://doi.org/10.1109/cvpr.2018.00474
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1109/lgrs.2023.3312643


Mustafa Majeed Abd Zaid et al. / Journal of Computer Science 2025, 21 (3): 635.645 

DOI: 10.3844/jcssp.2025.635.645 

 

645 

Sivachandiran, S., Mohan, K. J., & Nazer, G. M. (2022). 

Deep Transfer Learning Enabled High-Density 

Crowd Detection and Classification using Aerial 

Images. 2022 6th International Conference on 

Computing Methodologies and Communication 

(ICCMC), 1313–1317. 

 https://doi.org/10.1109/iccmc53470.2022.9753982 

Sugali, K., Sprunger, C., & N Inukollu, V. (2021). AI 

Testing: Ensuring a Good Data Split Between Data 

Sets (Training and Test) using K-means Clustering 

and Decision Tree Analysis. International Journal on 

Soft Computing, 12(1), 1–11. 

 https://doi.org/10.5121/ijsc.2021.12101 

Talebi, H., & Milanfar, P. (2021). Learning to Resize 

Images for Computer Vision Tasks. 2021 IEEE/CVF 

International Conference on Computer Vision 

(ICCV), 487–496. 

https://doi.org/10.1109/iccv48922.2021.00055 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tieleman, T., & Hinton, G. (2012). Divide the Gradient 

by a Running Average of its Recent 

Magnitude.COURSERA: Neural Networks for 

Machine Learning. Neural Networks for Machine 

Learning, 4(2), 26.  

Wang, Y., Lu, Zhong, Sheng, Yongwei, & Zhou, Yuyu. 

(2020). Remote Sensing Applications in Monitoring of 

Protected Areas. Remote Sensing, 12(9), 1370–1533.   

 https://doi.org/10.3390/rs12091370 

Weiss, M., Jacob, F., & Duveiller, G. (2020). Remote 

Sensing for Agricultural Applications: A Meta-

Review. Remote Sensing of Environment, 236, 

111402. https://doi.org/10.1016/j.rse.2019.111402 

Yoshua, B. (2013). Estimating or Propagating 

Gradients Through Stochastic Neurons. Machine 

Learning, 5.  

 https://doi.org/10.48550/arXiv.1305.2982 

https://doi.org/10.1109/iccmc53470.2022.9753982
https://doi.org/10.5121/ijsc.2021.12101
https://doi.org/10.1109/iccv48922.2021.00055
https://doi.org/10.3390/rs12091370
https://doi.org/10.1016/j.rse.2019.111402
https://doi.org/10.48550/arXiv.1305.2982

