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Abstract: Diabetic Retinopathy (DR), nowadays is one of the leading 

causes of blindness worldwide, it is a severe complication of diabetes 
mellitus that affects the retina blood vessels. Accurate diagnosis depends 

on early detection of DR. The study aims to develop a hybrid model that 
is the combination of a Vision Transformer and Capsule Network (ViT-

CapsNet) to classify the DR at early stages. The ViT-CapsNet model is 
proposed to detect the DR from the retinal images at the early stage. The 

eyepieces public dataset is used. The data preprocessing takes place in 
which the resizing and data augmentation are used to improve the quality 

and increase the diversity of the data. Then, the Vision transformer 
extracts the global features from the retinal fundus image while the 

capsule network preserves the spatial relationships and hierarchies 
within the data, also classified into different classes that are No DR, Mild 

DR, Moderate DR, Severe DR and Proliferative DR. The ViT-CapsNet 
model has a precision, recall and F1-Score with values of 0.92, 0.91 and 

0.91 respectively. The ViT-CapsNet model shows an accuracy of 94% 
compared to the other traditional methods such as CNN (88%), ResNet 

(90%), and EfficientNet (92%). The AUC-ROC scores for classes No 
DR, Mild DR, Moderate DR, Severe DR, and Proliferative DR are 0.56, 

0.48, 0.44, 0.45, and 0.51 respectively. 
 

Keywords: Vision Transformers, Capsule Networks, Diabetic 

Retinopathy, Retinal Images, Deep Learning 

 

Introduction 

Diabetes is a fatal disease that is caused by impairment 

in the beta cells of the pancreas. This leads to alteration in 
the production of insulin, causing hyperglycemia of more 

than 120 mg/dL. It can be further categorized into two 
types type I diabetes and type II diabetes. In type I 

diabetes there is destruction of beta cells of islet of 
Langerhans causing insufficient insulin production. 

Contrarily, Type II diabetes is a disorder where the body 
produces insulin but the receptors do not react to it 

(Dilmurodovna, 2023). The contributing reasons for this 
include Hyperglycemia, Oxidative Stress, Inflammation, 

and genetic factors. These further result in a decrease in 
growth factors (vasoendothelial growth factor and 

platelet-derived growth factor), nucleic acids, and 
proteins (ElSayed et al., 2023). In addition to this, there is 

also an alteration in the pathways which include the 

hexosamine pathway, polyol pathway, Nuclear Factor 
kappa-light-chain-enhancer of activated B cells (NFkB) 

pathway, Insulin signaling Pathway, Adenosine 
Monophosphate (AMP) Activated Protein Kinase, 

Peroxisome Proliferator-Activated Receptor (PPAR) 
Pathway, Toll-Like Receptor (TLR) Pathway, 

Gluconeogenesis Pathway, Glycolysis Pathway and 
Tricarboxylic Acid (TCA) Cycle (Roglic, 2016). The 

global prevalence of diabetes is around 500 million. 
Moreover, if diabetes is not controlled within a shorter 

period it leads to various complications. DR is one of them 
having a global prevalence of an estimated 27.0% of 

diabetes patients worldwide, resulting in 0.4 million blind 
people worldwide. According to a pooled study of many 

hospital-based studies, 19.48% of Ethiopians and 31.6% 
of Africans are estimated to have DR. 
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DR is a condition in which there is damage in the 

retina, leading to microaneurysms, retinal swelling, and 

neovascularization, which can cause vision impairment or 

blindness (Nazih et al., 2023). The disease is triggered by 

hyperglycemia, oxidative stress, inflammation, and 

dysregulated growth factors, which exacerbate the 

damage to retinal vessels. Changes in blood flow and 

pressure also contribute to the progression of this disease. 

DR is categorised into mainly two types Non-Proliferative 

Diabetic Retinopathy (NPDR) and Proliferative Diabetic 

Retinopathy (PDR). The initial stage is the NPDR of DR 

which is classified into mild, moderate, and severe, and 

develops on the retinal blood vessel damage. PDR is a 

long-term diabetes that affects the retinal blood vessels 

(Mohan et al., 2022). Within PDR, neovascularization, or 

aberrant blood vessel growth, occurs on the surface of the 

retina and within the vitreous fluid, which stops or leaks 

retinal blood vessels, reducing the amount of blood that 

reaches the retina. Since the early stage of DR has no 

symptoms, individuals may not become aware of any 

anomalies in their eyesight until the illness has gotten 

worse phases (Barker et al., 2023). At these late stages, 

retinal damage may become irreversible, leading 

to outcomes indicating retinal detachment and vitreous 

bleeding. Medical professionals can take action to stop or 

slow the disease's growth before these issues arise by 

using treatments like intravitreal injections of Vascular 

Endothelial Growth Factor (VEGF) medications or laser 

photocoagulation. To diagnose DR routine eye exams are 

essential for detecting mild changes in the retina. These 

early indicators can be recognized with the aid of 

methods such as fundus photography, Optical Coherence 

Tomography (OCT), and fluorescein angiography 

(Bajwa et al., 2023). The chance of DR getting worse can 

be reduced by prompt management and therapy, such as 

cholesterol, blood pressure, and glucose optimization. 

Additionally, early identification preserves autonomy 

and mental health by preventing blindness and lowering 

the need for expensive therapies. The automated 

technologies enhance clinical decision-making, 

streamline administrative tasks, and increase diagnostic 

precision. Early disease detection and personalized 

treatment are made possible by the systems' rapid 

analysis of medical data through the use of robotics, 

machine learning, and artificial intelligence (Phillip et al., 

2023). By automating tedious chores, lowering mistakes, 

and relieving administrative burdens, they optimize 

processes. Robotically assisted surgery enhances 

accuracy and shortens recovery periods. Real-time 

patient health assessments are made possible by 

automated monitoring technology, which allows for 

timely action. The efficiency, patient-centeredness, and 

accuracy are enhanced by automated systems. On the 

other hand, streamlining administrative tasks and human 

errors also reduced. 

Problem Statement  

DR is a chronic eye disease that causes blindness and 

significant vision impairment. The complexity of the 

retinal images and the subtlety of drug resistance 

anomalies present formidable challenges to existing 

diagnostic techniques (Silberman et al., 2010). DR 

diagnosis is hampered by several major problems, 

including the subjective nature of manual evaluation, the 

inconsistent performance of automated diagnostic 

techniques, and variability in retinal image appearance 

owing to DR stages and patient variations. The inability 

of current machine learning methods to reliably collect 
and analyze pertinent information from retinal pictures 

might result in variability in diagnostic accuracy and 

possible delays in recognizing key phases of diabetic 

retinitis (Skouta et al., 2023). These drawbacks highlight 

the need for better techniques that can handle the variety 

of DR symptoms and increase the accuracy of diagnosis. 

Objective 
 

 Developing a hybrid model ViT-CapsNet for DR 

detection 

 The use of ViT enhances the feature extraction from 

retinal images which improves the DR detection 

 Integration with capsule network classifies the 

different classes of DR 
 

Literature Review 

DR is recognized as one of the leading causes of 

blindness worldwide. The early identification of DR helps 

shield the patient from the dangers of blindness. The 

identification and grading of DR were addressed by several 

methods that used manually created features, such as blood 

vessels, hemorrhages, micro-aneurysms, and exudates. 

Traditional Methods 

For many years, the diagnosis of DR has been made 
using traditional procedures that combine sophisticated 
imaging tools with a manual examination. The authors 
suggest that direct ophthalmoscopy can be used as a 
diagnostic tool for family physicians to screen for DR 
with results on groups A, B, and O found to have 
corresponding sensitivity values of 59, 51, and 78% 
(Nourinia et al., 2023). Then comparing the ability of 
indirect ophthalmoscopy, B-Scan ultrasonography, and 
ultra-widefield fundus imaging to identify retinal 
fractures in cataractous eyes with results postoperative 
Intraocular Diameter Observation (IDO) findings 

revealed that Ultrasonography (USG (100%)) and 
preoperative IDO (99%) were the index tests with the 
highest sensitivity and specificity (Miao et al., 2024). The 
deep learning algorithms to identify DR in retinal fundus 
photos through a meta-analysis and systematic review 
with having research design Preferred Reporting Items for 
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Systematic Reviews and Meta-Analyses proposed by the 
author which has a sensitivity of 0.83 and specificity of 
0.92 (Islam et al., 2020). The fundus fluorescein 
angiography images of patients with DR could be 
automatically interpreted and clinically evaluated using 
deep learning with an accuracy of 91% (Gao et al., 2023). 
In eyes with referable nonproliferative DR, deep capillary 
nonperfusion on OCT angiography predicts 
complications, according to the author's theory with 

results having a sensitivity of 89% and specificity of 98% 
(Ong et al., 2023). The superficial Optical Coherence 
Tomography Angiography (OCTA) demonstrated the 
best performance in deep learning classification of DR, 
with 87.25% accuracy, 78.26% sensitivity, and 90.10% 
specificity, compared to control, No DR and NPDR layers 
(Ebrahimi et al., 2023). Automated Retinal Image 
Analysis for DR Screening in a Primary Care Setting 
Increases Adherence to Ophthalmic Care, this method has 
a 100% sensitivity rate for identifying abnormal screening 
results and, a 65.7% specificity rate (Liu et al., 2021). The 
authors presented an AI-based smart teleophthalmology 

application for diagnosing DR, achieving a precision of 
94.44%, specificity of 91.35%, and sensitivity of 92.51% 
(Ghouali et al., 2022). The different types of traditional 
methods are shown in Fig. (1). 
 

 
 
Fig. 1: Different types of traditional methods 

Deep Learning (DL) and Machine Learning (ML) 

Methods 

Many DL and ML techniques have been used for DR 

identification and each model has particular advantages. 

The author proposed a random forest algorithm to 

diagnose DR with a sensitivity of 91.40% and an accuracy 

of 94.38% (Zaaboub and Douik, 2020). Using the datasets 

IDRiD and DIARETDB1, a multidomain bioinspired 

feature extraction and selection model with 96.5% accuracy 

in DR severity level identification (Uppamma and 

Bhattacharya, 2023). Generative Adversarial Network 

(GAN), a deep neural network with a discriminator and a 

generator has shown remarkable results in image 

synthesis and image-to-image translation. Image domains 

are utilized in ophthalmology for segmentation, super-

resolution, post-intervention prediction, data 

augmentation, denoising, and feature extraction, but have 

limitations like mode collapse and spatial deformities 

(You et al., 2022). The other techniques used are shown 

in Table (1). 

Challenges 

Traditional methods, while highly interpretable, are 

limited by their reliance on manual feature extraction, 

limited scalability, and poor generalization to diverse 

datasets, resulting in inconsistent performance and a lack 

of adaptability to new data. Then to overcome these 

challenges ML and DL techniques take place but they 

also have limitations (Sebastian et al., 2023). In ML, the 

DL models, despite their improved scalability, 

adaptability, and performance, often struggle with 

interpretability and overfitting if not managed carefully. 

They also face difficulties in dealing with low-quality 

images, which can be mitigated through advanced 

augmentation techniques, despite their large amount of 

labeled data and substantial computational resources 

(Alyoubi et al., 2020). Table (2) shows the challenges 

between the traditional and ML models. 

 
Table 1: Relevant studies with their work on datasets with results and techniques used 

Reference no. Techniques Results Dataset 

Bilal et al. (2022) Convolutional 
Neural 

Network 
(CNN) 

Sensitivity Specificity Accuracy 
0.94 0.96 0.96 

 

EyePACS-1 

Sensitivity Specificity Accuracy 
0.93 0.94 0.93 

 

Messidor-2 

Sensitivity Specificity Accuracy 
0.91 0.92 0.91 

 

DIARETDB0 

Al-hazaimeh et al. 
(2022) 

Deep 
Convolutional 
Neural 
Network 

(DCNN) 

98.8 Eye-PACS 

Franklin and 
Rajan (2013) 

Artificial 
Neural 

0.953 DRIVE 
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Network 
(ANN) 

Oh et al. (2021) Residual 
Network with 
34 Layers 
(ResNet-34) 

Performance 
metric 

Accuracy Sensitivity Specificity 

ETDRS 7SF 0.82 0.82 0.82 
ETDRS F1–F2 0.80 0.80 0.80 

 

Catholic Kwandong 
University International St. 
Mary's Hospital provided 
the UWF fundus photos. 

Islam et al. (2023) Swin 
Transformer 
and Residual 
Network with 
152 Layers, 
Version 2 
(ResNet152V2) 

Accuracy precision recall F1 score 
0.99045 0.9907 0.9905 0.9903 

 

Asia Pacific Tele 
ophthalmology Society 
(APTOS) 

Hameed Abbood 

et al. (2022) 

GANs 94.2% IDRID and MESSIDOR 

Carrera et al. 
(2017) 

Support Vector 
Machine 
(SVM) 

95% Messidor 

Qomariah et al. 
(2019) 

CNN and SVM 95.20% Messidor 

Priya and Aruna 
(2013) 

SVM Sensitivity Specificity 
96.7% 71.4% 

 

DIARETDB0 

Bilal et al. (2022) U- Net 94.59% EyePACS-1 
97.92% Messidor-2 
93.52% DIARETDB0 

Das et al. (2021) CNN Accuracy Precision 
98.7% 97.2% 

 

DIARETDB1 

Yaqoob et al. 
(2021) 

Random Forest 
and ResNet 

96% Messidor-2 
75.09% EyePACS 

 
Table 2: Challenges that are in traditional methods and machine learning methods with specifications 

Specifications Traditional methods Machine learning methods 

Feature extraction and 

representation 

labor-intensive and manual, prone to missing small patterns It is automatic, and picks up intricate patterns, but 

requires big datasets 

Efficiency and 

scalability 

Manual processes lead to limited scalability Quite scalable, but it needs a lot of processing 

power 

Interpretability and 

trustworthiness 

Easily interpreted and decision-making that makes sense Uninterpretable data are frequently viewed as 

"black boxes" 

Generalization and 

robustness 

Overfitting can occur when there is poor generalization of new data Enhanced generalization, but insufficient 

regularization may cause overfitting. 

Handling low-quality 

images 

When noise or defects are present in retinal images, performance 

suffers greatly. 

Handel the imbalance images with advanced 

techniques 

User Acceptance Due to its transparency and ease of use, it is highly regarded by 

physicians 

Due to trade-offs between interpretability and 

performance, there is mixed acceptance 

Speed and real-time 

processing 

slower and unsuitable for real-time use Faster and also good for real-time use 

 

Materials and Methods 

Model Architecture 

For early detection and improved retinal image 

classification, ViT-CapsNet architecture has been proposed 

as shown in Fig. (2). ViT transformer extracts the features 

and the capsule network to classify the DR classes. The Vit 

works in several stages. First, it divides the image into 

patches with a fixed size. Then these patches are flattened 

into vectors; further vectors are mapped into high-

dimensional space. After that, positional encoding is added 

to retain its physical information. By getting the physical 

information from the positional encoding the layer 

normalization provides stability to the input and accelerates 

the process and then multi-head attention concentrates on 

the different parts of the image simultaneously. Then the 

capsule network has different stages which are the 

convolutional layer, primary capsule, and digit capsule. In 

which the convolutional layer extracts the local features, 

then the primary capsule captures the complex features and 

the digit capsule gets the information by dynamic routing. 

The integration of the ViT-CapsNet increases the model's 

strength. In the classification stage, the output of the 

capsule network shows the probability of the input image 

belonging to a particular DR grade, which is No DR, Mild 

DR, Moderate DR, Severe DR, and Proliferative DR. 

Before starting this phase, data collection and pre-

processing are important steps. 
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Data Collection 

The dataset is collected from Kaggle 

(https://www.kaggle.com/datasets/andreivann/eyepacs/d

ata), which is a publically available dataset for DR disease 

as shown in Fig. (3). The eyepacs data contains 30262 

high-resolution fundus images and the distribution of the 

images concerning classes is shown in Table (3). The 

images were gathered from US primary care facilities. 

The clinicians assigned a severity grade of 0, 1, 2, 3, and 

4 which is NO DR, Mild DR, Moderate DR, severe DR, 

and Proliferative DR to each image.  
 

 
 
Fig. 2: Vit- transformer and CapsNet 
 

 
 
Fig. 3: Eyepacs dataset of retinal images 
 
Table 3: Dataset distribution of eyepieces images 

Grade Classes Eyepacs images 

0 No DR 22,116 
1 Mild DR 2,106 
2 Moderate DR 4,368 
3 Severe DR 845 
4 Proliferative DR 827 

Each image is authorized by the International Clinical 

Diabetic Retinopathy (ICDR). The ICDR scale helps 

healthcare professionals accurately diagnose and monitor 
the progression of DR in patients. This standardized 

system allows for consistent communication and 

treatment planning among medical providers. 

Data Pre-Processing 

The accuracy and quality of the model depend upon 

the input images that are used to train the model. That is 

why the data is pre-processed before being provided to the 

model and the pre-processing steps are shown in Fig. (4). 

Resizing 

The quality of any deep learning model may be 

impacted by the retinal image's fluctuating size. To 

overcome this issue, the resizing image process has been 

done with the help of the bicubic interpolation technique. 

Bicubic interpolation enhances the image quality by 

considering the surrounding pixel values. To calculate the 

bicubic interpolation Eq. (1) is used:  

 

 𝐼(𝑥, 𝑦) = ∑ ∑ 𝑎𝑖𝑗
2
𝑗=−1

2
𝑖=−1  . 𝑓(𝑥 − 𝑖, 𝑦 − 𝑖)  (1) 

 

where, I(x, y) is the interpolated value at point (x, y), 

𝑓(𝑥 − 𝑖, 𝑦 − 𝑖) is the value of the pixel at (𝑥 − 𝑖, 𝑦 − 𝑖) 

and 𝑎𝑖𝑗  is the derived coefficient from the cubic 

convolutional kernel and determines the weight of the 

surrounding pixels.  

Augmentation 

The augmentation process creates the modified 

versions of the existing data samples by increasing their 

diversity, it involves color adjustment and geometric 

alteration. Color adjustment involves brightness, contrast, 

saturation, and hue. Brightness can be achieved by 

multiplying the pixel value by the factor. In contrast, it is 

done by creating the difference between pixel values and 

the mean values of the image. Then saturation modifies 

the color appearance in the image. Then Hue changes the 

color tone of the images and is also used to modify the 

color appearance.  
 

 
 
Fig. 4: Pre-processing steps 



Vishal Sharma et al. / Journal of Computer Science 2025, 21 (2): 304.321 

DOI: 10.3844/jcssp.2025.304.321 

 

309 

Table 4: Dataset deviation 

Types of datasets Data deviation (%) 

Training dataset 70 

Validation dataset 15 

Test dataset 15 

 

Geometric alterations are the set of transformations that 

are used to change spatial properties. It includes rotation, 

cropping, and removing noise. Rotation rotates the images 

with a specific angle. Then cropping is involved in selecting 

the most relevant part that is necessary and removing the 

unnecessary parts. Then removing noise is used to remove 

the unwanted pixel variations that are not contributing the 

information to the image. 

Finally, the data is divided into three datasets: Test, 

validation, and training shown in Table (4). The training 

dataset has an approximate size of 70%, the validation 

dataset has an approximate size of 15% and the test 

dataset has an approximate size of 15%. The model is 

trained using the training dataset, adjusted and fine-tuned 

using the validation dataset, and then tested using the test 

dataset to assess the model's ultimate performance. This 

process adds to the model's well-trainedness and ability to 

generalize to new, untested data. 

Vit-Transformer 

Vit-Transformer is a technique that extracts the 

features. Features that are local, global, and 

hierarchical. Its self-attention mechanism captures the 

contextual informational global dependencies of the 

image ViT is involved in different stages like patch 

embedding, position encoding, layer normalization, 

and multi-head normalization. Firstly, the patch 

embedding process started. 

Patch Embedding 

Patch embedding converts the input image into a non-

overlapping smaller patch and these patches are 

embedded into a vector shown in Fig (5). The image size 

is 102411024 pixels which is used for patch embedding 

shown in Table (5). The purpose of the patch embedding 

is to convert the high-resolution image into patches and 

then transform those patches into vectors. The image has 

three channels (Red, Green, and Blue). To calculate the 

image patches Eq. (2) is used: 

 

𝛮 =  (
𝐻

𝑃
) × (

𝑊

𝑃
)  (2) 

 

where, N is the total number of patches, H is the height 

of the pixel, W is the weight of the pixel and p is the 

patch size.  

Flattening the Patches 

It is the process commonly used for converting multi-

dimensional images into one-dimensional images and also 

helps the image to represent the data in a format in which 

the pixel intensity is treated as a single data point shown 

in Table (6). To calculate the flattened vector size Eq. (3) 

is used: 

 

𝐹𝑙𝑎𝑡𝑡𝑒𝑛𝑒𝑑 𝑣𝑒𝑐𝑡𝑜𝑟 𝑠𝑖𝑧𝑒 = 𝛲 × 𝛲 × 𝐶  (3) 

 

where, P is the patch size, C is the channels and the 

channels are Red, Green, and Blue.  

 

 

 
Fig. 5: Patch distribution 

 
Table 5: Number of patches created 

Sr no. Steps Output 

1 Height of the pixel 1024 

2 Width of the pixel 1024 

3 Patch size 1616 

4 Total number of 
patches created 

𝛮 =  (
1024

16
) × (

1024

16
) 

=  64 ×  64 =  4096 

 
Table 6: Several flattened shapes were created 

Stages Formulas Outputs 

Patch size 

definition  
P  P = 1616 = 256 

Flatten 

each patch 

by which 

converting 

each 2D 

patch 

matrix 

into a 1D 

vector. 

𝐹 =  𝐹𝑙𝑎𝑡𝑡𝑒𝑛𝑒𝑑(𝑃) 

= 

 [𝑃11
𝑅 , 𝑃11

𝐺 , 𝑃11
𝐵 , . . . . . . . . , 𝑃16

𝑅 , 𝑃16
𝐺 , 𝑃16

𝐵 ] 

Every patch 

turns into a 1D 

vector with a 

size of 768 

Flattened 

vector size 
= P  P  C = 16163 = 

768 

Shape 

after 

flattening 

Output shape = Total number of 

vectors  flattened vector size 

4096768 
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Linear Projection  

It is the process that is used to map the flapped 

images into the lower dimensional space. In ViT image 

data is converted into a format that the transformer 

layers can process. It extracts the meaningful features for 

the classification of the image and captures the 

relationship and dependencies between different parts of 

the image shown in Table (7). To calculate the linear 

projection Eq. (4) is used: 

 

𝐸𝑖  = 𝐹𝑖  ∙  𝑊 +   𝑏  (4) 

 

where, 𝐸𝑖 ∈ ℝ𝐷  is the projected embedding of the ith 

patch, 𝐹𝑖 ∈ ℝ𝑑 is the flattened vector of the ith patch, W ∈
ℝ𝐷×𝑑 is the weight matrix, and b ∈ ℝ𝐷  is the bias matrix. 

Here, ℝ represents the set of real numbers and the real 

number is used to denote the dimensions of vectors. 

Position Embedding 

Position encoding is the technique that provides 

information about the position of each patch. It divides an 

image into a grid of non-overlapping patches shown in 

Fig. (6). It provides the spatial location of each patch; 

spatial location means providing the specific position of 

each patch with the 2D grid shown in Table (8). Here 2D 

represents the columns and rows. To calculate the even 

dimension equation 5 is used: 
 

𝑝(𝑖,2𝑘) = 𝑠𝑖𝑛 (
𝑖

100002𝑘/𝐷
)  (5) 

 
To calculate the odd dimension Eq. (6) is used: 

 

𝑝(𝑖,2𝑘+1) = 𝑐𝑜𝑠 (
𝑖

100002𝑘/𝐷
)  (6) 

where, i is the position index, k is the initial dimension 

index and D is the total embedding dimensions.  

Layer Normalization 

The layer normalization stabilizes the training process 

and ensures that the model works and learns properly with 

a maximum efficiency rate. It is also known as Min-Max 

normalization because it is a technique that provides a 

specific range to the data. Min-Max are the original values 

in the dataset shown in Table (9). Equation (7) is used for 

layer normalization: 

 

𝑥′  =  
𝑥 − 𝑚𝑖𝑛

𝑚𝑎𝑥 − 𝑚𝑖𝑛
  (7)  

 

where, 𝑥′ is the normalization value, The original data's 

maximum value is denoted by max, the minimum value 

by min, and x is the original pixel value. 
 

 
 
Fig. 6: Position embedding 

 
Table 7: Shapes of the projected image 

Steps Formula Output 

Input flattened vector 𝐹𝑖 =  (𝑓1 , 𝑓2 , ⋯ 𝑓768) Size of flattened vector 768 

Weight matrix W∈ ℝ768×𝐷 Size of weight matrix = 768× 𝐷 

Linear transformation 𝐸𝑖 = 𝐹𝑖  ∙  W +   b The projected embedded vector size is D 

Bias matrix b ∈ ℝ𝐷 It is added to the projection. 

Total output shape size after projection Total number of patches × D The entire image is represented by 4096× D 

 
Table 8: Position of path embedding 

Stages Formula Output 

Defining parameters  i, k, D Where i = 10, k = 0, D= 768 

Even dimension encoding(2k)  
𝑝(𝑖,2𝑘) = 𝑠𝑖𝑛 (

𝑖

100002𝑘/𝐷
) 

Sin(10)≈ − 0.544 

Odd dimension encoding(2k+1) 
𝑝(𝑖,2𝑘+1) = 𝑐𝑜𝑠 (

𝑖

100002𝑘/𝐷
) Cos(

10

100002/768
)≈ − 0.995 

Concatenating sin and cos values  𝑃𝑖 = [𝑃(𝑖,0), 𝑃(𝑖,1), ⋯ , 𝑃(𝑖,𝐷−1)] 𝑃10  =  [0.544, 0.995, ⋯ ,0.487], and here 
length is 768 

Position embedding matrix 𝑃𝑖 = [𝑃0 , 𝑃1, ⋯ , 𝑃(𝑖,𝑁−1)] 𝑃 ∈ ℝ4096×768: 4096 rows and 768 columns 

Combining with patch embedding  Z = E + P Combined matrix Z ℝ4096×768. Now every 
patch embedding has a positional context 
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Table 9: Linear normalization 

Stages Formula Output 

Min- Max and x value Min = 0 
Max = 255 
X == 128 

The minimum value is 0 and the maximum value is 
255 for normalization 

Linear Normalization 
𝑥′  =  

𝑥 −  𝑚𝑖𝑛

𝑚𝑎𝑥 −  𝑚𝑖𝑛
 𝑥′  =  

128

 255
≈  0.502, the normalized value is in 

between the range (0,1) and x is 128 which is the 
mid-grayscale value that is 0 to 255 

 
Table 10: Final output size by multi-head attention 

Stages Formulas Execution Output 

Projected each patch into Q, 
K, V 

𝑄 =  𝑋𝑊𝑄, K =  𝑋𝑊𝐾 , V =
 𝑋𝑊𝑉 

X is the input matrix of size (4096, 
256)and project to Q, K, V matrix 
with shape (4096, 256) where 
assuming that attention heads are 8 

or the size of each head is 64  

The shape of each Q, K, V 
matrix is (4096, 256)  

Computing raw attention 
scores by the dot product of Q 
and K 

Scores = 
𝑄.𝐾𝑇

√𝑑𝐾
, where 𝑑𝐾= 64 

are the dimensions per head  

The raw score for a single head 
could be [1.2, 0.9, 2.1], and the 

scaling factor √64 = 8 

 Scaled score is [0.15, 0.11, 
0.26] 

To obtain attention weights 
applying softmax function tor 

to the raw scores  

Softmax(𝑍𝑖) = 
𝑒𝑥𝑝(𝑍𝑖)

∑ 𝑒𝑥𝑝(𝑍𝑗)𝑖
 For the scaled scores [0.15, 0.11, 

0.26] = softmax(0.15) = 
𝑒𝑥𝑝(0.15)

𝑒𝑥𝑝(0.15)+𝑒𝑥𝑝(0.11)+𝑒𝑥𝑝(0.26)
 ≈ 0.32, 

softmax(0.11) = 
𝑒𝑥𝑝(0.11)

𝑒𝑥𝑝(0.15)+𝑒𝑥𝑝(0.11)+𝑒𝑥𝑝(0.26)
 ≈ 0.30, 

softmax(0.26) = 
𝑒𝑥𝑝(0.26)

𝑒𝑥𝑝(0.15)+𝑒𝑥𝑝(0.11)+𝑒𝑥𝑝(0.26)
 ≈ 0.38 

Attention weights = (0.32, 
0.30, 0.38) 

A sum of weighted values  Attention weights × values Values = [0.5, 1.0, 1.5], 

Output = (0.32×  0.5, 0.30×  1.0, 

0.38×  11.5) 

Weighted values = (0.16, 
0.30. 0.57) 

Concatenation of heads Concatenating the output 
from 8 heads, each size is 64 

After concatenating the output size 
= (4096, 512)  

Output = (4096, 512) 

Final output projection that 
concatenated back to the 
input dimension  

Concatenated output. 𝑊0, 

where 𝑊0 is the learnable 
weight matrix 

4096 patches of size 256 Output = (4096, 256)  

 

Multi-head Attention 

ViT uses multi-head attention to capture diverse 

features from input data. Each head learns three linear 

projections: Queries (Q), Keys (K), and Values (V). The 

attention mechanism computes compatibility, scales, 

derives attention weights, and aggregates values. This 

process enables the model to focus on input parts 

simultaneously, capturing detailed patterns and 

relationships shown in Table (10) and to calculate multi-

head attention Eq. (8) is used: 

 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑖 , 𝐾𝑖 , 𝑉𝑖)  =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝑖𝐾𝑖

𝑇

√𝑑𝑘
) 𝑉𝑖  (8) 

 

where, 𝑄𝑖  is the query matrix at the ith head, 𝐾𝑖 is the 

key at the ith head 𝑉𝑖 is the value at the ith head 𝑑𝑘 are the 

dimensions of the key vectors and softmax converts raw 

vector scores into probabilities. In which 𝑄𝑖  =  𝑋𝑊𝑖
𝑄

: 

 
𝐾𝑖  =  𝑋𝑊𝑖

𝐾 , 𝑉𝑖  = 𝑋 𝑊𝑖
𝑉 

where: 𝑊𝑖
𝑄

 is the weight matrix of the query for the ith 

attention head 𝑊𝑖
𝐾 is the weight matrix of the key for the 

ith attention head, 𝑊𝑖
𝑉 is the weight matrix of the value for 

the ith attention head and X is the input matrix. 

Capsule Network 

A capsule network is used here to understand the 

hierarchical relationship between objects and also 

preserve the spatial relationship. It analyzes the visual 

data in different conditions of object deformation and 

rotation. A capsule network aims for the equivariance, not 

the invariance. Equivariance means changes in the inputs 

(which are changes in rotation and translation); there will 

be no predictable changes in the output network while 

preserving the spatial information. It uses the capsules to 

store the data and these capsules are the set of neurons. 

The different layers of the capsule network are the 

convolutional layer which extracts the features from the 

input data, the primary layer constructs the capsules and 

the digit layer predicts the class of the input data based on 
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the information provided by the capsules. The 

descriptions of the layers are given below. 

Convolutional Layer 

The convolutional layer is a building block that is 

designed to process the data and images. It extracts 

local features from the input data, such as edges, 

textures, and patterns, using a collection of learnable 

filters, or kernels shown in Fig (7). It detects the 

features from the input and generates the initial input 

for the capsule network shown in Table (11). 

Convolution is achieved by applying the convolution 

operation in a kernel K where the input size is 𝐶𝑖𝑛  ×
 𝐻𝑖𝑛  × 𝑊𝑖𝑛  where 𝐶𝑖𝑛 is the input channels of the input, 

𝐻𝑖𝑛 is the height, 𝑎𝑛𝑑 𝑊𝑖𝑛  is the width. The shape of 

the input kernel convolutional is 𝐶𝑖𝑛  ×  𝐾ℎ  ×  𝐾𝑊 

where 𝐶𝑖𝑛  is the depth, 𝐾ℎ is the height, 𝐾𝑊 is the width 

of the kernels and the kernel depth is equal to the input 

number of channels. The height 𝐻𝑜𝑢𝑡 depends on 

factors like input height 𝐻𝑖𝑛, and the width 𝑊𝑜𝑢𝑡  

depends on factor input width 𝑊𝑖𝑛, The stride of the 

kernel, and the padding of the input. 

 

 

 
Fig. 7: Local feature extraction 

 
Table 11: Shape of the image after applying the 

convolutional layer 

Stages Formulas Output 

Reshaping the patch 
sequence 1D to 2D 

grid 

Total elements = 
total elements 

(New) 

[1, 4096, 768] 
= [64, 64, 768] 

Applying the 
convolutional layer 

Output height = 

(
64−3+2×1

1
) + 1 = 

64  

[64, 64, 32] 

Calculation of the 

shape output  

Output height = 

(
64−3+2×1

1
) + 1 = 

64 

[64, 64, 32] 

To calculate the height and width Eqs. (9-10) are used: 

 

𝑂𝑢𝑡𝑝𝑢𝑡 ℎ𝑒𝑖𝑔ℎ𝑡 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 =

(
𝐼𝑛𝑝𝑢𝑡 𝐻𝑒𝑖𝑔ℎ𝑡 − 𝐹𝑖𝑙𝑡𝑒𝑟 𝐻𝑒𝑖𝑔ℎ𝑡 + 2 × 𝑝𝑎𝑑𝑑𝑖𝑛𝑔

𝑆𝑡𝑟𝑖𝑑𝑒
) +  1  (9) 

 

𝑂𝑢𝑡𝑝𝑢𝑡 𝑤𝑖𝑑𝑡ℎ 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 =

(
𝐼𝑛𝑝𝑢𝑡 𝑤𝑖𝑑𝑡ℎ − 𝐹𝑖𝑙𝑡𝑒𝑟 𝑊𝑖𝑑𝑡ℎ + 2 × 𝑝𝑎𝑑𝑑𝑖𝑛𝑔

𝑆𝑡𝑟𝑖𝑑𝑒
) +  1  (10) 

 

where, input height is the height of the input feature map, 

filter height is the height of the convolutional filter 

(kernel), input width is the width of the input feature map, 

filter width is the width of the convolutional filter 

(kernel), Stride is the step size of the filter which mover 

across the input feature map and padding is added to 

maintain and adjust the output dimensions.  

Primary Capsule 

The primary capsule converts the raw output of the 

convolutional layer into the structured representations 

shown in Fig. (8). Rather than employing scalar 

activations, the primary capsule uses vector 

representations to encode low-level features from the 

input data shown in Table (12).  

To calculate the output of the primary capsule, Eq. (11) 

is used: 

 

𝑢𝑖 =  𝑅𝑒𝐿𝑈(𝑊𝑖 ∗  𝑋 + 𝑏𝑖)  (11) 

 

where, 𝑢𝑖  is the output vector of the ith primary capsule, 𝑊𝑖 

is the convolutional filter or weight matrix for the i th 

capsule, * denotes the convolutional network, 𝑏𝑖 is the bias 

term ReLU is the rectified linear unit activation function.  

 

 
 
Fig. 8: Primary capsule layers 
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Table 12: Output of the primary capsule layer 

Stages Formulas Output 

Applying 
convolutional 
layers 

𝑢𝑖

=  𝑅𝑒𝐿𝑈(𝑊𝑖

∗  𝑋 + 𝑏𝑖) 

4×4×32×8 

Output 
dimension  

Output size = 

(
𝐻−𝐾

𝑆
) + 1 

Where H = 8, K = 9 , S 
= 2; output height and 
width is = 

(
8−9

2
) + 1 = 4 ; output 

shape = 4×4×32×8 

Reshaping to 
capsule form  

Reshaped output 
to size = 

H’×W’×M ×  𝑑  

4× 4 ×32 × 8  

Squash 
activation  

Squash(s) = 
||𝑠||2

1+||𝑠||2

𝑠

||𝑠||
 

4× 4 ×32 × 8; squash 
function scales each 
vector so that its length 
is between 0 and 1  

Output 

capsule 
vector  

Each capsule 

output vector is 

𝑉𝑖 = squash (𝑢𝑖) 

4× 4 ×32× 8, in the 
final output primary 
capsule, consists of 32 

capsule vectors of 4×
4 spatial locations  

 

Digit Capsules 

Digit capsules recognize and classify the entire 

digits shown in Fig. (9). It takes the input from the 

previous layer, the primary capsule layer, and 

determines which digit is present and which is not. It 

also handles the pose, scale, and variations in the 

orientations. In a fully connected network, the output 

layers are the shape of 𝑁𝑐𝑙𝑎𝑠𝑠 ×  1, where 𝑁𝑐𝑙𝑎𝑠𝑠  Shows 

the number of classes. Every class is represented by a 

capsule of dimension 𝐷𝐷𝐶. The shape of the digit 

capsule block is 𝑁𝑐𝑙𝑎𝑠𝑠  × 𝐷𝐷𝐶. Table (13) shows the 

calculations and final output of the digit capsules. To 

calculate the digit capsule Eq. (12) is used: 

 

𝑉𝑗 =  𝑠𝑞𝑢𝑎𝑠ℎ (∑ 𝑐𝑖𝑗  𝑢̂𝑗|𝑖𝑖 )  (12) 

 

where, 𝑉𝑗  is the output vector, 𝑢̂𝑗|𝑖 is the vector that 

predicts the outcome from the ith primary capsule to the jth 

digit capsule, 𝑐𝑖𝑗  is the coupling coefficient, and squash 

(.) is the non-linear squashing function. 

To calculate squash Eq. (13) is used: 

 

𝑠𝑞𝑢𝑎𝑠ℎ(𝑆𝑖) =
||𝑆𝑖||2

1+||𝑆𝑖||2

𝑆𝑖

||𝑆𝑖||
  (13) 

 

where, 𝑆𝑖 is the squash function of the input vector for the 

digit capsule, i is the weighted sum of the transformed 

outputs from the primary capsules, 

|𝑆𝑖||2 measures the magnitude or length of the vector, 

1 + ||𝑆𝑖||
2 adding 1 to the squared length, 

𝑆𝑖

||𝑆𝑖||
 Maintains 

the direction of the input vector. 

 
 
Fig. 9: Digit capsule by dynamic routing 
 
Table 13: The final output of the digit capsule layer 

Stages Formulas Output 

Input  𝑢𝑗𝜖ℝ𝑁×𝑀×𝑑𝑝 16× 32 × 8 
For every 16 
spatial positions, 
there will be 32 
primary capsules 

To transfer the 
output of the 
primary capsule to 
the digit capsule 
initializing the 
weight  

𝑊𝑖𝑗 ∈ ℝ𝑑𝑐×𝑑𝑝 , 
Where i belongs 

to [1, K] and j 
belongs to [1, 
M] 

10× 32 × 8 

Computing the 

prediction vectors 
𝑢𝑗|𝑖̂ = 𝑊𝑖𝑗  ∙  𝑢𝑗 [0.3, -0.4, 0.2, 

0.1, ⋯ , 0.5] 

Initializing the 
coupling 
coefficients 

𝑐𝑖𝑗 =  
1

𝑘
 

16× 32 × 10 

Squash function  squash(𝑆𝑖) = 
||𝑆𝑖||2

1+||𝑆𝑖||2

𝑆𝑖

||𝑆𝑖||
 

16 × 10 × 16 

The final output of 
the capsule is  

𝑣𝑖 = 𝑠𝑖 10 × 16 

 
Dynamic Routing 

Dynamic routing establishes a more effective 

connection between the primary capsule (low-level 

capsule) and the digit capsule (high-level capsule). It 

creates the strength of connections between each pair of 
capsules. The digit capsules are extracted from the main 

capsule using a computation. The weight 𝑊𝐷𝐶 is trained 

using backpropagation. 𝑁𝑝𝑐 is the number of primary 

capsules, i ∈  [1,  𝑁𝑃𝐶] is the index for the primary capsule 

with dimensions 𝐷𝑃𝐶 and j ∈  [1,  𝑁𝑐𝑙𝑎𝑠𝑠] is the index of 

the digit capsule with dimensions 𝐷𝐷𝐶, 𝑤𝑖𝑗
𝐷𝐶is shape of 

𝐷𝑃𝐶 ×  𝐷𝐷𝐶 , Individual opinion of i regarding the digit 

capsule j is shown in Eq. (14).  
 
𝑢̂𝑗|𝑖  =  𝑢𝑖𝑊𝑖𝑗

𝐷𝐶  (14) 
 
where, 𝑢𝑖 is the ith primary capsule, we get an individual 

digit capsule for each i with a block of shape. 𝑁𝑐𝑙𝑎𝑠𝑠 ×
 𝐷𝐷𝐶, 𝑊𝐷𝑅 is the weight called the routing weights. These 

routing weights are updated during the forward pass 

according to how much each individual digit capsule 
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agrees with the combined one. The routing weight is 

𝑊𝐷𝑅  is of the shape 𝑁𝑃𝐶  ×  𝑁𝑐𝑙𝑎𝑠𝑠. The routing weight is 

first started with zero. The coupling coefficients 𝐶𝑖𝑗 

Shown in Eq. (15): 
 

𝐶𝑖𝑗 =  
𝑒𝑥𝑝(𝑊𝑖𝑗

𝐷𝑅)

∑ 𝑒𝑥𝑝(𝑊𝑖𝑘
𝐷𝑅)𝑘

  (15) 

 
where, 𝐶𝑖𝑗 is the coupling coefficient between the primary 

capsule and the digit capsule, 𝑊𝑖𝑗  is the initial log prior 

probabilities indicate the degree of connection between 

each primary capsule j and each digit capsule i.  

Classification Layer 

This layer transforms the network's learned features into 

class predictions. A classification model consists of a dense 

layer producing raw scores for different classes, which are 

then converted into a probability distribution using an 

activation function. The model's prediction class is chosen 

based on the highest probability. The classification layer 

processes the high-level feature vectors and gives the output 

as NO DR, Mild DR, Moderate DR, Severe DR, or 

Proliferative DR shown in Fig. (10): 
 
 No DR: This means that there are no diabetic retinal 

lesions. These weaker vessels may burst as the illness 

worsens, resulting in hemorrhages that show up as 
black spots on the retina. 

 Mild DR: It is the earlier stage of DR in this stage the 

symptoms are often difficult to identify and also 

difficult to detect without an eye examination 

 Moderate DR: These patients present with one to 

three retinal quadrant hemorrhages, together with 

cotton wool patches, hard exudates, or venous 

beading. Within a year, there is a 12-27% chance that 

they will get PDR. 

 Severe DR: Intraretinal Microvascular Abnormalities 

(IRMA) in one or more quadrants, intraretinal 

hemorrhages (>20 in each quadrant), or venous 
beading in two or more quadrants are present in these 

individuals. The absence of neovascularization, 

which would suggest PDR, is required for these 

observations. Macular OCT and fluorescein 

angiography should be used to follow patients with 

severe NPDR to identify any Diabetic Macular 

Edema (DME) or early neovascularization. 

 Proliferative DR: These patients have either vitreous, 

retinal hemorrhages, or neovascularization, but no 

proliferative diabetic retinopathy that has developed 

into proliferative DR. For further testing and care, 

these individuals should be referred immediately to a 
retina specialist. Laser pan-retinal photocoagulation 

is typically used to treat peripheral 

neovascularization. These patients must see a retina 

expert once a month until their condition stabilizes. 

They might then be seen every six to twelve months 

 
 
Fig. 10: Classification stages 
 

Results 

The result section presents the proposed hybrid ViT-

CaspsNet model for DR detection. In this model, the 

eyepieces dataset is used to train and evaluate the model 

in which the performance matrices are measured through 

accuracy, precision, recall, and F1-score. The ViT-

CapsNet model gets an accuracy of 94% by comparing the 

other models which are CNN, ResNet, and EfficientNet. 

The class-wise performance shows the results for No DR, 

Mild DR, Moderate DR, Severe DR, and Proliferative 

DR. Visual analysis and graph representation for DR 

severity and predicted probability, AUC-ROC curves, 

model performance comparison (for accuracy, precision, 
and F1-Score), training and validation for Accuracy or 

loss and the confusion matrix shows the performance of 

the model more accurately in classifying the images. 

Performance Matrix Equations 

To diagnose the different classes of the ViT-CapsNet 

model, the different equations of the performance 

matrices, accuracy, precision, recall, and F1-score, were 

used. In which the TP, TN, FP, and FN stand for true 

positive, true negative, false positive, and false negative 
values, respectively. TP shows the number of cases 

predicted correctly having the specific DR, TN shows the 

number of cases correctly predicted but not having the 

specific DR, FP shows the number of cases incorrectly 

predicted on a specific DR and FN shows the number of 

cases incorrectly predicted but not having the specific DR: 
 
 Accuracy  

Accuracy measures the percentage of the correctly 

identified classes that indicate the model accuracy for 

both DR stages and health cases. To calculate the 

accuracy Eq. (16) is used: 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (16) 

 
The model achieved a 94% accuracy rate for 

classifying the DR images demonstrating its 
effectiveness and performance  
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 Precision 

Measuring the model's accuracy at a given DR is 

called precision; it is expressed as the percentage of 
true positive predictions among the model's positive 

predictions. It mainly focuses on the correct positive 

values. To calculate the precision Eq. (17) is used:  
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (17) 

 
The model achieved a 0.92 precision rate for 

classifying the DR images demonstrating its 

effectiveness and performance. This is crucial in 

high false positive cases due to its reliability in 

positive predictions 

 Recall 

Recall evaluates the accuracy of the model by 

identifying the positive instances and detecting the 

relevant cases of the DR classification. To calculate 

the recall Eq. (18) is used:  
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (18) 

 
The model accurately identifies 91% of true DR 

classes, demonstrating its effectiveness in detecting 

DR and minimizing missed cases with a recall of 0.91 

 F1-Score  

It combines precision and recall, which measures 

the model's performance and is particularly used for 
imbalanced datasets, it also balances the trade-off 

between these metrics. To calculate the F1-Score 

Eq. (19) is used:  
 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (19) 

 

The model achieves an F1-Score of 0.91 which offers 

a thorough perspective of its overall classification 

performance 

 

Class Wise Metrics  

The model identifies a precision of 0.95 and a recall of 

0.93 for No DR. This leads to an imposing F1-score of 

0.94 with an accuracy of 95%, demonstrating accuracy. 

Strong performance in recognizing early-stage disease is 

demonstrated by the detection of mild DR, for which the 

precision is 0.88 and recall is 0.85. This results in an F1-

Score of 0.86 and an accuracy of 92%. The model reports 

a recall of 0.80, an F1-score of 0.82, and an accuracy of 

89% for moderate DR. Within the Severe DR category, 

the precision and recall are 0.77 and 0.75, respectively, 

yielding an F1-score of 0.76 and an accuracy of 84. 

Finally, the model's precision of 0.70, recall of 0.68, F1-

score of 0.69, and accuracy of 80% for Proliferative DR 

demonstrate the challenges in precisely identifying the 

disease's most advanced stage, shown in Table (14). 

Table 14: Class-wise performance matrices 

Classes Precision Recall F1-Score 
Accuracy 
(%) 

No DR 0.95 0.93 0.94 95 

Mild DR 0.88 0.85 0.86 92 

Moderate 
DR 

0.83 0.80 0.82 89 

Severe DR 0.77 0.75 0.76 84 

Proliferative 
DR 

0.70 0.68 0.69  80 

 
Table 15: Evaluation of each model's performance 

Models 
Accuracy 
(%) Precision Recall F1-Score 

CNN 88 0.85 0.82 0.83 

ResNet 90 0.88 0.86 0.87 

EfficientNet 92 0.90 0.88 0.89 

ViT-
CapsNet 

94 0.92 0.91 0.91 

 

Table (15) illustrates that the ViT-CapsNet model, 

with an accuracy of 94%, then the other models 

compared with CNN (88%), ResNet (90%) and 

EfficientNet (92%). The ViT-CapsNet model appears to 

correctly classify a greater proportion of images across 

all the classes, based on its high accuracy. With the 

lowest percentage, the model shows fewer false positive 

values having a precision of 0.92. Which will reduce the 

incorrectly classified images that do not accurately find 

the true DR cases. The ViT-CapsNet model identifies 

more accurate cases than the other model by having a 

recall and F1-score of value 0.91 and 0.91 respectively 

which shows the model’s robustness and demonstrates 

the balance performance.  

Visual Analysis and Graph Representations 

The model can be analyzed for performance using 

different visual representations such as scatter plots, 

AUC-ROC curves, and comparative analyses. The 

analysis shows training and validation for accuracy and 

loss, overfitting in the training. A confusion matrix 

evaluates the classification outcomes for each DR class. 

Such visuals are insightful in understanding how robust 

a model is. 

The model's performance in differentiating between 

DR classes is evaluated using a scatter plot of DR severity 

versus predicted probability shown in Graph (1). Each 

point on the graph denotes an individual prediction made 

by the ViT-CapsNet model. Whereas the x-axis displays 

the actual severity of the DR class, the y-axis displays the 

anticipated frequency of the related class. Overestimated 

probabilities are shown by points above the diagonal and 

underestimated probabilities are indicated by points 

below the diagonal.  
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Graph 1: DR severity and predicted probability 
 

Graph (2) shows AUC-ROC scores throughout the 

evaluation of the model across the various severity 
categories. Curves showing the true positive rate on the y-

axis and the false positive rate on the x-axis are shown for 

each class. The curve indicates the higher performance of 

the model when it is close to the top left corner. The No 

DR suggests the high accuracy of the model which has the 

AUC likely close to 0.95. AUC values are somewhat 

lower for Mild DR and Moderate DR, suggesting some 

compromises between true positives and false positives 

when identifying intermediate classes of DR. The Severe 

DR and Proliferative DR classes have the flattest ROC 

curves, which suggests that the model has a harder time 
correctly identifying advanced DR classes. 

The ViT-CapsNet model gets an accuracy of 94% to 

the other models this can be done due to the combination 

of the ViT and the capsule network as shown in Graph (3). 

The model exceeds in precision achieving with 0.92 score 

which is higher than the EfficientNet's, ResNet’s, and 

CNNs with scores of 0.90, 0.88, and 0.85 respectively, 

this increased precision shows that the model can reduce 

false positive rate. The ViT-CapsNet enhanced precision 

due to its ability to capture fine-grained features in retinal 

images. The F1-score of the model which balances the 

recall and precision is more than the other models that 
handle the challenging classes of DR or also capture the 

relevant cases, minimizing missed diagnoses.  

The performance of the model can be evaluated 

through the training and validation accuracy as well as its 

training and validation scores shown in Graph (4). 

Validation accuracy measures a model's performance on 

unseen data, while training accuracy evaluates its ability 

to accurately classify images within the training dataset. 

The model reaches 94% of training accuracy which 

indicates effective learning of retinal features. Validation 

accuracy indicates the model's generalization which 
follows the upward trend. The model can demonstrate a 

strong generalization across various classes of DR, 

including difficult cases such as Proliferative and Severe 

DR, as it stabilizes around 92-93%. A well-regularized 

model that minimizes overfitting and handles unknown 

data, as well as training data, is suggested by the small 

difference in accuracy between training and validation 

runs. Training loss shows how the predictions aligned 
with the actual labels in the training set. By the end of 

training, the training loss approaches a low value, 

suggesting that the model's parameters have been 

optimized. Although it likewise tends to decrease, the 

validation loss frequently finds stability at a little greater 

value than the training loss. High performance is 

attained, and overfitting and underfitting problems are 

eliminated when training and validation loss and 

accuracy curves are aligned. 

The confusion matrix provides a detailed breakdown 

of the models in five classes which are No DR, Mild DR, 
Moderate DR, Severe DR, and Proliferative DR shown in 

Graph (5). In No DR the matrices show the 22116 true 

positive values which indicates healthy images of correct 

identifications. In Mild DR, Moderate DR, Sereve DR, 

and Proliferative DR the matrices have 2106, 4368, 845, 

and 827 true positives respectively. That indicates model 

effectiveness, detecting the severe conditions and 

identifying different classes. The confusion matrix's 

diagonal elements accurately classify No DR, Mild DR, 

and Moderate DR, while the off-diagonal elements 

indicate areas where misclassification occurred. 

 

 
 
Graph 2: AUC-ROC scores for DR classification by class 
 

 
 
Graph 3: Model performance comparison for accuracy, 

precision, and F1-Score 



Vishal Sharma et al. / Journal of Computer Science 2025, 21 (2): 304.321 

DOI: 10.3844/jcssp.2025.304.321 

 

317 

 
 
Graph 4: Training and validation for Accuracy or loss 
 

 
 
Graph 5: Confusion matrix for DR classification 
 

Discussion 

The ViT-CapsNet model is a novel approach to DR 

detection, combining Vision Transformers and Capsule 
Networks. This model achieves an impressive 94% accuracy 
across five DR classes, reducing false positives, particularly in 
advanced stages like Severe and Proliferative DR. Its focus on 
early-stage detection is key, with high F1-scores for No DR and 
Mild DR, crucial for real-world applications. The model 
maintains balanced precision and recall values across different 

DR classes, but its slightly lower performance in Proliferative 
DR suggests the need for improved optimization techniques. 
The Vision Transformer's multi-head attention mechanism 
captures global dependencies, while the Capsule Network 
ensures robustness against image rotation and deformation. This 
combination outperforms traditional methods like CNNs and 

ResNet, which struggle with spatial invariance and lack 
hierarchical spatial information preservation. However, the 
model faces challenges in computational demands and reliance 
on high-quality annotated datasets, which could impact its 
practical deployment in clinical settings. 

Table (16) shows that the ViT-CapsNet model, which is the 
integration of Vision Transformers and CapsNet models, has 
achieved 94% accuracy, 0.91 recall, 0.94 F1-Score, and 0.92 
precision in DR detection across five classes. It outperforms 

traditional methods like CNNs and ResNet by capturing global 
dependencies and preserving spatial relationships. However, 
challenges include large dataset dependency, high 
computational demands, and the need for improved 
interpretability. The model's effectiveness is particularly 
evident in early-stage detection, with high F1-Scores for No 
DR (0.94) and Mild DR (0.82). The MAP Concordance 
Regressive Camargo’s Index-Based Deep Multilayer 

Perceptive Learning Classification (MAPCRCI-DMPLC) 
model, using the Diabetic Retinopathy Arranged dataset, 
achieves 92.28% accuracy, focusing on DR classification 
using advanced neural networks. The IDRIS dataset, using 
Deep Q Networks (DQN) and Exponential Gannet Pelican 
Optimization Algorithm (EGFOA), reports a recall of 92.2% 
but lacks details on accuracy and precision. The EyePACS 
dataset, using ViT, achieves 88.01% accuracy with high recall 

and precision. Messidor-2 and APTOS 2019 datasets show 
accuracies ranging from 87.35-89.35%, focusing on early-
stage DR detection and validation. CNN-based model datasets 
used like Diabetic Retinopathy Detection report lower 
performance, with accuracy as low as 70% and recall at 50%. 
The DDR and APTOS dataset CNN512 and YOLOv3 models 
achieved 89% accuracy with 89% recall. The ViT-CapsNet 
model stands out for its hybrid approach, ViT for global 

feature extraction, and CapsNet for spatial hierarchy 
preservation, providing superior performance across all DR 
stages, especially in early-stage detection. 

 
Table 16: Comparison with existing techniques 

References Datasets  Techniques 
Accuracy 
in % 

Recal
l in % 

F1-Score 
in % 

Precision 
in % Classes Limitations 

Muthusamy 
and Palani 

(2024) 

Diabetic 
Retinopathy 

Arranged 

MAPCRCI
-DMPLC 

92.28 - - - Normal, 
mild, 

moderate, 
severe, 
and 
proliferati
ve 

Enhance DR 
classification by 

adopting advanced 
neural networks for 
a faster, more 
accurate, and fully 
automated grading 
system to aid 
screening 

Prabhakar et 

al. (2024) 

IDRIS DQN, 

EGFOA 

91.6 92.2 - - - - 

Zhang and 
Chen (2025) 

EyePACS ViT 88.01 89.49 89.23 90.12 Normal, 
Mild, 
Moderate, 
Severe, 

The research will 
concentrate on 
validating the 
model in various 

Messidor-2 87.35 89.34 90.10 88.26 
APTOS2019 89.35 91.71 89.93 89.97 
APTOS2019 85.34 88.26 86.43  97.34  
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and 
Proliferati
ve 

clinical settings to 
ensure its reliability 
and explore 
potential 
enhancements 

Reguant et 

al. (2021) 

EyePACS 

and 
DIARETDB
1 

CNN 89~95  74 ~ 

86 

- - No DR, 

mild 
NPDR, 
moderate 
NPDR, 
severe 
NPDR and 
proliferati
ve DR 

The study's 

performance and 
assessment may be 
limited due to its 
reliance on limited 
datasets, which 
lack specific 
information on 
DME and laser 

photocoagulation 
scars 

Khan et al. 
(2021) 

EyePacs Visual 
Geometry 
Group-
Network in 
Network 
(VGG-

NiN) 

85 55.6 59.6 67 Normal, 
Mild, 
Moderate, 
Severe, 
PDR 

Make significant 
changes to the 
existing model's 
architecture and 
preprocessing 
techniques, 

focusing on the 
impact on the 
classification of DR 
stages, particularly 
early ones 

Sallam et al. 
(2020) 

Diabetic 
Retinopathy 
Detection 

CNN   70 50 - - No DR, 
Mild, 
Moderate, 

Severe, 
Proliferati
ve DR 

- 

Alyoubi et 
al. (2021) 

DDR and 
APTOS 

CNN512 
and 
YOLOv3 

89 89 - - no-DR, 
mild, 
moderate, 
severe and 
proliferati
ve DR 

Integrate several 
datasets to attain 
the dataset's 
equilibrium 

Proposed 
model 

Eyepacs  ViT-
CapsNet 

94 91 94 92 no DR, 
mild DR, 
moderate 
DR, 
severe 
DR, and 
proliferati
ve DR 

The ViT-CapsNet 
model faces 
challenges like large 
dataset dependency, 
imaging variations 
sensitivity, high 
computational 
demands, inference 

time, lack of 
interpretability, and 
extensive 
hyperparameter 
tuning 

 

Conclusion 

With an estimated 950,000 affected, DR is the primary 

cause of vision impairment and blindness in the WHO 

European Region. This causes damage to the retina's 

blood vessels, which can result in visual problems and, in 

certain situations, blindness. If diabetes retinopathy is 

detected early, it can be prevented. Traditional methods 

are there to detect the disease but have a low accuracy 

rate. Hence, the hybrid ViT-CapsNet model is proposed 

to overcome the challenges and limitations of the 

traditional model. The model identifies and detects the 

problem at an early stage. In this model, the eyepieces 

dataset of 30262 high-resolution fundus images is used 
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which is the public dataset obtained from Kaggle. Then 

the data is pre-processed in which the resizing and 

augmentation process is done to increase the diversity, the 
data is then split with 70% of the data being a training 

dataset, 15% being a validation dataset and 15% being a 

test dataset. ViT extracts the global features and captures 

the contextual information about the images, while the 

capsule network preserves the hierarchical connections, 

both of which are necessary for precise DR classification. 

This model overcomes the traditional models CNN, 

ResNet, and EfficientNet. The model is classified into five 

DR classes that are no DR, mild DR, moderate DR, severe 

DR, and proliferative DR using performance matrices 

accuracy, precision, recall, and F1-Score. The model ViT-
CapsNet achieves a performance matrices accuracy of 

94% and F1-scores of 0.94 for No DR, 0.86 for Mild DR, 

0.82 for Moderate DR, 0.76 for Severe DR and 0.69 for 

Proliferative DR. Comparatively than the other model that 

is CNN (88% accuracy, F1-score of 0.83), ResNet (90% 

accuracy, F1-score of 0.87) and EfficientNet (92% 

accuracy, F1-score of 0.89). Therefore, the ViT-CapsNet 

helps diabetic patients identify retinal issues early on for 

a better diagnosis and prevention of vision loss. 
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