
© 2025 Faisal Rahman and Benfano Soewito. This open-access article is distributed under a Creative Commons Attribution (CC-BY) 4.0
license.

Research Article

Enhancing Database Availability: A Combined Approach
Using SQL Always on Failover Cluster Instance and
Availability Groups

Faisal Rahman and Benfano Soewito

Department of Computer Science, Bina Nusantara University, Jakarta, Indonesia

Article history
Received: 26-01-2025
Revised: 12-05-2025
Accepted: 26-05-2025

Corresponding Author:
Faisal Rahman
Department of Computer Science,
Bina Nusantara University, Jakarta,
Indonesia
Email:
faisal.rahman003@binus.ac.id

Abstract: Database availability is a critical factor in supporting business
processes to ensure uninterrupted operations. When the production server
experiences failures, data may become inaccessible, disrupting business
operations. To mitigate this risk, separating the production server from the
reporting server is essential. However, this approach introduces challenges
related to data synchronization and automatic failover during system
failures. Existing High Availability (HA) solutions have significant trade-
offs: FCI enables fast instance-level failover but lacks database replication,
making it vulnerable to shared storage failures. Meanwhile, AG ensures
continuous database synchronization but has higher failover latency due to
log shipping overhead. While FCI provides automatic failover at the
instance level, AG offers database-level synchronization and protection,
including a read-only access option. To overcome these limitations, this
study integrates SQL Always On Failover Cluster Instance (FCI) and
Availability Groups (AG), combining FCI's rapid failover capabilities with
AG's robust database replication. This hybrid approach enhances availability
beyond standalone FCI or AG. Testing over 30 days demonstrated a 99.97%
availability rate with an average downtime of 12.3 minutes, offering a
practical solution for improving operational efficiency and minimizing
system failures.

Keywords: Database Availability, Failover Cluster Instance, Availability
Groups, Downtime

Introduction
In the current business environment, data is a vital

asset for every organization. The availability of ready-to-
use data at any time is a crucial factor in generating
reports for decision-making processes. The data used for
reporting purposes must be synchronized with the
production server. However, data corruption in
synchronized systems can disrupt reporting processes,
potentially leading to financial losses. According to a
survey conducted by Lawrence & Simon (2023), as
shown in Figure (1), 14% of 385 companies experienced
database synchronization issues or data corruption in the
past three years, leading to data unavailability. This
situation highlights the need for improved database
availability and synchronization between production and
reporting servers.

To address this issue, two options are available:
upgrading to a server with greater resources or
distributing the workload between the production and

reporting servers. The primary challenge lies in ensuring
that data remains available and consistently synchronized
with the allocated resources, even with the separation of
production and reporting servers. This approach aims to
maintain server performance and eliminate any
synchronization issues. Addressing synchronization
issues between production and reporting servers is not a
straightforward task and must be executed accurately.
Failure to do so may result in problems during backup
processes, report generation, or data analysis, ultimately
affecting decision-making processes.

Therefore, several studies have explored the
separation of production and reporting servers. In
previous research, Zhang et al. (2021) utilized a High
Availability (HA) solution based on redundancy within a
single physical storage system, with data synchronization
between a local disk and a network disk. In this
configuration, the local disk functions as the primary
storage device, while the network disk serves as a
backup. In the event of a failure, the system

Journal of Computer Science

Faisal Rahman and Benfano Soewito / Journal of Computer Science 2025, 21 (6): 1332.1342
DOI: 10.3844/jcssp.2025.1332.1342

1333

automatically switches to the network disk without any
service disruption.

Fig. 1: Uptime Institute (Lawrence & Simon, 2023)

Literature Review

Hannum et al.(2019) in their study, employed High
Availability SQL (HASQL) within the open-source
database system Comdb2. This system is capable of
recovering and resuming interrupted transactions caused
by connection loss by redirecting users to another cluster
node, thereby preventing data loss.

From these two studies, the authors observe that there
remains a potential for data corruption or loss despite the
allocation of resources for storage synchronization and
data recovery. If the storage used experiences physical
damage, the nodes or disks that have been distributed
will no longer be accessible to users and additional time
will be required for the database recovery process.

This study applies a combination of high-availability
methods with system recovery to separate the functions
of production and reporting databases while enhancing
database availability. To achieve this objective, the study
combines two features of SQL: Always Failover Cluster
Instance (FCI) and Availability Groups (AG). These
technologies provide automatic database replication and
failover, ensuring continuous access and minimizing the
risk of data loss (Carter, 2020).

In contrast to standalone FCI or AG implementations,
the combination of FCI + AG ensures both instance-level
and database-level redundancy, providing a more
resilient failover mechanism. While FCI alone offers
rapid failover, it lacks database replication, making it
vulnerable to storage failures. Conversely, AG ensures
data consistency across multiple replicas but suffers from
failover delays due to synchronization overhead. By
integrating FCI and AG, this study aims to create a
hybrid HA solution that minimizes downtime while
maintaining high data consistency, addressing the
limitations of both approaches.

SQL Always On Failover Cluster Instance (FCI) isan
instance of SQL Server installed across multiple nodes
within a Windows Server Failover Cluster (WSFC). This
type of instance relies on resources such as storage and a
virtual network name (Microsoft, 2024). If the primary
node experiences hardware, operating system,
application, or service failures, the SQL Server instance
will be transferred to another node within the WSFC.

SQL Always On Availability Groups (AG) is a high
availability and disaster recovery solution that provides
an advanced alternative to database mirroring. AG
maximizes database availability for users within an
organization (SQL Server, 2024). AG is capable of
protecting a set of databases on the primary replica by
continuously transferring transaction log blocks from all
AG databases on the primary replica to the
corresponding databases on all secondary replicas.

According to SQL Server (2024), Windows Server
Failover Cluster (WSFC) allows multiple servers to work
together to maintain service availability. In this setup,
each server, referred to as a node, can be either a
physical or virtual machine. These nodes communicate
through various hardware and software components and
WSFC continuously monitors their health. If one node
fails, its services are automatically reassigned to another
node to ensure uninterrupted operation. In practical
implementations—particularly within banking
institutions and enterprise-scale data centers—Windows
Server Failover Cluster (WSFC) is commonly deployed
using a multi-node and multi-subnet configuration. This
design enables nodes to be geographically distributed,
supporting robust disaster recovery strategies. Each node
is typically connected to shared storage via a Storage
Area Network (SAN), facilitating the use of SQL Server
Failover Cluster Instances (FCI) to achieve rapid
instance-level failover. WSFC employs quorum models
such as Node Majority or Node and File Share Majority
to ensure safe failover decisions and prevent split-brain
scenarios in cases of inter-node communication failure.
When integrated with SQL Server Always On
Availability Groups (AG), WSFC forms a hybrid high
availability architecture where FCI manages instance
failover and AG provides synchronous database
replication and read-only secondary replicas. This
layered architecture allows WSFC to function as both a
failover decision engine and a connection director via
intelligent listener routing. The topology supports real-
time monitoring of nodes, storage, and network health
using tools like Failover Cluster Manager or third-party
solutions. The integration of WSFC in a hybrid FCI +
AG model delivers key benefits including minimized
downtime, seamless client access continuity, and
enhanced data resilience. By leveraging both instance-
level and database-level failover capabilities,
organizations can maintain the availability of mission-

http://192.168.1.15/data/13061/fig1.png
http://192.168.1.15/data/13061/fig1.png

Faisal Rahman and Benfano Soewito / Journal of Computer Science 2025, 21 (6): 1332.1342
DOI: 10.3844/jcssp.2025.1332.1342

1334

critical systems even in the event of hardware failures or
network disruptions.

High Availability (HA) refers to an IT system,
component, or application’s ability to operate
continuously at a high level of performance without
interruption over a specified period of time (Cisco,
2024). According to Zamanian et al. (2019), server
failures must not result in service unavailability or data
loss. To ensure service continuity, a failover process is
required. Failover is a procedure that transfers the active
node to a passive node, ensuring uninterrupted service
for users (Chen & Tsai, 2019). In the failover process, it
is essential to calculate the availability time of a system
to ensure it can be accessed again. The percentage of
availability can be determined using the following
formula(Kit & Aibin, 2023):

Mean Time Between Failures (MTBF) refers to the
average time elapsed between one failure and the next in
a system, representing the reliability of the system.
Meanwhile, the Mean Time To Recover (MTTR) is the
average time required to repair and restore the system to
operational status after a failure occurs. Both metrics are
crucial for evaluating system performance and planning
maintenance strategies.

Several technical and environmental factors can
significantly reduce MTBF in SQL Server environments.
These include hardware degradation such as disk failures
or memory faults, improper configuration of cluster
nodes, overheating due to insufficient cooling, and
network instability that leads to replication timeouts.
Additionally, frequent software updates without thorough
validation, high transactional workloads that result in
resource contention, and misconfigured quorum models
in Windows Server Failover Clustering (WSFC) can also
trigger unplanned failovers or service interruptions.
Identifying and mitigating these risks through real-time
system monitoring, infrastructure optimization, and
preventive maintenance practices is essential to sustain a
high MTBF and ensure continuous service availability in
mission-critical operations.

Related Works

Several approaches have been employed to ensure
data consistency and secure business processes from
system failures. However, these approaches have
limitations, such as high implementation complexity and
scalability challenges when the system operates within a
large organizational environment.

Previous studies have explored SQL Server High
Availability (HA) mechanisms separately. For instance,
Zhang et al. (2021) investigated storage-based
redundancy for HA, while Hannum et al. (2019)

proposed HASQL for open-source database clustering.
However, these studies did not address the combined
impact of FCI and AG on performance and failover
efficiency.

Other research, such as Chen & Tsai (2019), analyzed
HA using PostgreSQL and MySQL but lacked insights
into SQL Server’s built-in failover mechanisms.
Meanwhile, Khan & Sabri (2021) focused on SQL
Server Always On AG but did not consider its integration
with FCI. This study builds upon these works by
integrating FCI and AG, leveraging FCI’s rapid failover
and AG’s robust data replication to achieve an optimal
balance between speed and reliability. Unlike prior
studies, this research systematically evaluates failover
efficiency, resource consumption, and downtime
reduction across multiple configurations.

Comparison with Alternative HA Solutions

In addition to SQL Always On solutions, several
high-availability architectures are widely used in
database systems:

1. Oracle Data Guard: Provides database-level failover
but lacks instance-level protection, making it
inefficient for SQL Server instance failures

2. MariaDB Galera Cluster: Uses synchronous multi-
master replication but requires all nodes to
synchronize before committing transactions,
increasing latency

3. PostgreSQL Streaming Replication: Ensures
redundancy via log shipping but lacks automatic
failover, requiring external tools like Patroni for
cluster management

Prior studies, such as Shrestha & Tandel (2023); and
Zamanian et al. (2019), have explored the benefits and
limitations of Oracle Data Guard, MariaDB Galera, and
PostgreSQL Streaming Replication. Their findings
indicate that while Oracle Data Guard provides robust
replication, it does not offer instance-level failover like
FCI. Similarly, the MariaDB Galera Cluster ensures
synchronous replication but introduces high transaction
latency, making it less efficient for real-time
applications. This study builds upon these findings by
demonstrating how a hybrid approach (FCI + AG) can
mitigate these limitations by combining fast instance
failover with reliable database replication.

Materials
This study utilizes various configurations of

processor cores and memory to identify the minimum
specifications required to meet the needs of FCI, AG,
and FCI + AG in designing the separation of functions
between production and reporting servers to increase
database availability. Table (1) provides the environment

Availability % =()
​ ×

MTBF+MTTR
MTBF 100

Faisal Rahman and Benfano Soewito / Journal of Computer Science 2025, 21 (6): 1332.1342
DOI: 10.3844/jcssp.2025.1332.1342

1335

specifications used as the baseline for testing the
performance and requirements of each configuration.
Table 1: Environment specification

Component FCI AG FCI + AG
CPU (Cores) 4 up to 8 4 up to 8 4 up to 8
Memory (GB) 4 up to 8 4 up to 8 4 up to 8
Disk (GB) 300 300 300
OS Win Server 2012 Win Server 2012 Win Server 2012
SQL Version 2012 2012 2012

Methods
This study involves several research stages and

designs that focus on the separation of functions between
the production server and the reporting server to increase
database availability.

Fig. 2: Research stages

Research Stages

The research stages depicted in Figure (2) present the
systematic process involved in the combination of SQL
Always On FCI and AG, which is divided into five
phases as follows:

1. Problem Identification: Identifying issues related to
the need to increase database availability

2. Literature Review: Collecting relevant literature on
solutions to database availability issues

3. System Design: Based on the problem and literature
review, methods for database synchronization are
designed

4. Implementation: The proposed synchronization
methods are implemented and tested

5. Testing and Data Collection: Conduct tests under
various scenarios and compile the results into
comparative tables

6. Analysis and Conclusion: Analyze the collected
data and draw conclusions based on the research
findings

System Design

SQL Always On FCI

Figure (3) presents the system design of SQL Always
On Failover Cluster Instances (FCI), where the
production server and standby server utilize a shared
storage architecture to ensure high availability. The
Availability Group (AG) listener directs transactions to
the production server and in the event of a failure, the
failover cluster automatically transfers the workload to
the standby server. The failover process is triggered
when the system detects an anomaly in the production
server through continuous heartbeat monitoring, SQL
Server health checks, or node unavailability within
Windows Server Failover Clustering (WSFC). If the
production server stops responding due to network
failure, hardware crash, or service interruption, the
WSFC quorum mechanism determines the failure and
initiates the failover process.

Fig. 3: System design of SQL always on FCI

During failover, the AG listener detects the transition
and automatically reroutes client connections to the
standby server, ensuring minimal downtime.
Transactions that were in progress during the failure may
be rolled back or retried, depending on the failover
policy and the database transaction model used. The
production database remains synchronized with the
standby server through synchronous replication, ensuring
that the standby server contains the latest committed
transactions before taking over as the primary server.

The typical failover time can vary depending on
network latency and cluster settings but generally
completes within seconds to minimize service disruption.
Once the failed production server is restored, a failback
mechanism can be initiated to reinstate its role as the

http://192.168.1.15/data/13061/fig2.png
http://192.168.1.15/data/13061/fig2.png
http://192.168.1.15/data/13061/fig3.png
http://192.168.1.15/data/13061/fig3.png

Faisal Rahman and Benfano Soewito / Journal of Computer Science 2025, 21 (6): 1332.1342
DOI: 10.3844/jcssp.2025.1332.1342

1336

primary server. Before failback occurs, the system
ensures that all transaction logs and data are
resynchronized between the standby and production
servers to prevent data loss. Depending on the system
configuration, failback can be performed manually by an
administrator or automatically through a preconfigured
policy within the failover cluster manager. To enhance
system reliability and reduce the load on the primary
database, data from the production database is routinely
backed up to dedicated backup storage and replicated to
a reporting database in a read-only mode. This reporting
architecture enables analytical processing through a cube
server, allowing complex queries and reports to be
generated without impacting the performance of the
production server.

Furthermore, the reporting server retrieves data
asynchronously from the backup server, ensuring
optimized resource allocation and operational efficiency.
The interaction between the reporting and backup servers
is further illustrated in Figure (4).

Fig. 4: SQL Always On the FCI dashboard

SQL Always On AG

Figure (5) presents the system design of SQL Always
On AG, which ensures high availability through real-
time synchronization and automatic failover. The AG
listener directs connections to the primary replica
(production database), with data synchronously
replicated to the standby replica and the read-only replica
(reporting database) for reporting purposes.

SQL Always On AG supports two replication modes:
synchronous and asynchronous. In synchronous mode,
transactions are committed simultaneously on both the
primary and standby replicas, ensuring zero data loss but
potentially increasing transaction latency. This mode is
typically used within the same data center or low-latency
network environments to guarantee data consistency.

In contrast, the asynchronous mode allows
transactions to be committed on the primary replica

without waiting for acknowledgment from the secondary
replicas, improving performance but introducing the risk
of data loss in case of failure. As shown in Figure (5), the
primary and standby replicas operate in synchronous
mode to ensure high availability, while the reporting
replica utilizes asynchronous replication to optimize read
performance without impacting transaction speed on the
production server. The automatic failover process allows
the standby replica to take over the role of the primary
replica in the event of a failure, without disrupting access
to the reporting database, which operates with a
dedicated IP address. Reporting is carried out via a cube
server, processing data from the reporting server without
placing a load on the production server.

Fig. 5: System design of SQL Always On AG

This design ensures high availability and efficiency
in database management. Each instance is equipped with
dedicated storage, where synchronized data is
automatically and in real-time replicated from the
production server to both the standby and reporting
servers, eliminating any data loss, as shown in Figure
(6).

Fig. 6: SQL is always On the AG dashboard

http://192.168.1.15/data/13061/fig4.png
http://192.168.1.15/data/13061/fig4.png
http://192.168.1.15/data/13061/fig5.png
http://192.168.1.15/data/13061/fig5.png
http://192.168.1.15/data/13061/fig6.png
http://192.168.1.15/data/13061/fig6.png

Faisal Rahman and Benfano Soewito / Journal of Computer Science 2025, 21 (6): 1332.1342
DOI: 10.3844/jcssp.2025.1332.1342

1337

SQL Always On FCI+AG

Figure (7) presents the system design that integrates
SQL Always On Failover Cluster Instances (FCI) and
Availability Groups (AG), providing comprehensive
protection. FCI offers automatic failover at the SQL
Server instance level, while AG ensures synchronization
and protection at the database level, with a read-only
access option on secondary replicas for reporting or
backup purposes. Figure (8) presents two groups
combined into a single dashboard.

Fig. 7: System design of SQL Always On FCI + AG

SQLDBCLUS01 consists of the production and
standby servers using FCI as the production database,
synchronizing data in real time to VM-AG03, which
serves as the reporting database. VM-AG03 uses AG
with a status of "synchronized" and "no data loss." The
integration of FCI and AG introduces distinct failover
mechanisms that interact within the system. FCI provides
automatic failover at the instance level using Windows
Server Failover Clustering (WSFC), ensuring that the
entire SQL Server instance moves to the standby server
in case of failure.

In contrast, AG handles failover at the database level,
allowing specific databases to transition independently
between replicas. The diagram in Figure (7) indicates
that the production and standby servers are clustered
under FCI, sharing the production database. In the event
of a failure, FCI manages the transition of the SQL
instance between the production and standby servers,
maintaining high availability. Meanwhile, AG ensures
that the reporting database remains accessible, as it
operates asynchronously on a separate instance.

The failover handling of these two systems can be
independent or coordinated. If the FCI cluster fails over,
the production instance shifts between the nodes without
affecting the AG replicas. However, if an AG-level
failure occurs on the reporting replica, AG will handle
the transition independently without impacting the
production database. This design ensures that system
availability is maximized, preventing single points of
failure while maintaining data consistency and
accessibility across instances.

Fig. 8: SQL Always On FCI + AG dashboard

Testing Conditions

Testing was conducted in a virtualized environment
using Windows Server 2012 R2 and SQL Server 2012,
deployed on virtual machines with varying
configurations (4–8 CPU cores, 4–8GB RAM and
300GB SSD storage). The evaluation involved three
setups: (1) FCI-only, (2) AG-only, and (3) FCI + AG
hybrid.

To simulate failover, intentional disruptions were
introduced at different levels:

1. Node Failure Simulation: The primary node was
forcefully shut down to test automatic failover

2. Network Partitioning: The connection between the
primary and secondary replicas was severed to
assess failover handling in AG mode

3. Manual Failover: Failover was manually triggered
through SQL Server Management Studio to observe
recovery time

SQL Server was configured with synchronous
replication for the primary and standby replicas in AG
mode, while FCI relied on shared storage failover.
Performance metrics, including failover time,
CPU/memory utilization, and transaction recovery time,
were recorded over 30 days.

Results and Discussion

Server Utilization

Table (2) presents the monitoring results of server
utilization over 60 min, using a sample configuration of
an 8-core processor and 8GB RAM. The results
underline the strengths and trade-offs of each

http://192.168.1.15/data/13061/fig7.png
http://192.168.1.15/data/13061/fig7.png
http://192.168.1.15/data/13061/fig8.png
http://192.168.1.15/data/13061/fig8.png
http://192.168.1.15/data/13061/fig9.png
http://192.168.1.15/data/13061/fig9.png

Faisal Rahman and Benfano Soewito / Journal of Computer Science 2025, 21 (6): 1332.1342
DOI: 10.3844/jcssp.2025.1332.1342

1338

configuration. While AG provides robust data replication
and high availability, it comes at the cost of higher CPU,
memory, and disk utilization. FCI offers a lightweight
solution with minimal resource requirements but lacks
the advanced replication features necessary for
environments requiring high data consistency. FCI + AG
emerges as the most balanced configuration, leveraging
the strengths of both FCI and AG. It ensures reliable
failover and data protection with optimized resource
utilization.

Table 2: Comparison of server utilization

Component FCI AG FCI + AG
CPU 0.7331% 2.6738% 1.5391%
Memory 37.8363% 40.1525% 23.1686%
Disk 0.04218% 0.08416% 0.0825%

The results indicate that AG has the highest CPU
usage at 2.6738%, significantly higher than FCI
(0.7331%) and FCI + AG (1.5391%). This is primarily
due to the continuous synchronization process in AG,
which requires frequent transaction log captures and log
shipping to secondary replicas. Additionally, AG’s ability
to handle multiple read-only replicas introduces
additional overhead, as it must maintain consistency
across instances while ensuring minimal data loss.
Similarly, AG exhibits the highest memory utilization at
40.1525%, compared to FCI (37.8363%) and FCI + AG
(23.1686%). This increased memory consumption stems
from the need to manage multiple database replicas and
process real-time transactional updates across nodes. The
disk utilization pattern follows a similar trend, where AG
(0.08416%) consumes nearly twice the disk resources
compared to FCI (0.04218%), reflecting the impact of
continuous log writes and replication overhead.

This makes the FCI + AG configuration ideal for
environments demanding high data availability,

consistency, and operational efficiency, particularly in
systems with resource constraints. The trade-offs
between resource usage and functionality suggest that
FCI + AG is best suited for mission-critical applications
where downtime and data loss must be minimized
without overloading system resources.

Backup Performance

In this testing phase, two backup methods were
implemented: full backup and differential backup, to
evaluate the duration and throughput required during the
backup process. The tests were conducted 30 times for
each specification.

Full Backup

Table (3) presents a comparison of duration and
throughput for the full backup process using FCI, AG,
and FCI + AG configurations across various hardware
specifications. AG demonstrated the best performance
with an average duration of 289.69 sec and the highest
throughput of 1,790.59 GB/h, particularly on the 6-core
and 8 GB RAM specification, achieving a throughput of
2,186.66 GB/h.

FCI recorded the fastest average duration of 287.99
sec with a throughput of 1,691.64 GB/h, providing
stability during the backup process without replication
overhead, with its best performance observed on the 6-
core and 4 GB RAM configurations.

FCI + AG had a longer average duration of 323.70
sec and a throughput of 1,587.14 GB/h but offered
additional data protection through integrated failover and
replication, showing optimal performance with 6 cores
and 6 GB RAM. The AG configuration is ideal for
efficiency and speed, while FCI + AG provides a balance
between speed and data reliability.

Table 3: Comparison of full backup

No. Spec (Proc &
Memory)

FCI AG FCI + AG
Duration
(s)

Throughput
(GB/hr)

Duration
(s)

Throughput
(GB/hr)

Duration
(s)

Throughput
(GB/hr)

1 4 Cores, 4 GB 308.40 1,590.30 376.57 1,350.81 415.00 1,214.54
2 4 Cores, 6 GB 289.83 1,662.62 327.60 1,511.23 377.70 1,292.42
3 4 Cores, 8 GB 297.80 1,630.41 365.67 1,315.24 411.60 1,199.72
4 6 Cores, 4 GB 274.23 1,766.85 302.40 1,736.55 342.23 1,439.60
5 6 Cores, 6 GB 307.57 1,575.49 289.83 1,722.31 270.47 1,835.25
6 6 Cores, 8 GB 274.30 1,775.82 229.20 2,186.66 276.03 1,774.45
7 8 Cores, 4 GB 277.13 1,757.20 245.87 2,067.69 263.73 1,899.55
8 8 Cores, 6 GB 277.90 1,767.72 237.17 2,124.15 294.70 1,761.52
9 8 Cores, 8 GB 284.73 1,698.38 232.87 2,100.64 261.83 1,867.21

Average 287.99 1,691.64 289.69 1,790.59 323.70 1,587.14

Faisal Rahman and Benfano Soewito / Journal of Computer Science 2025, 21 (6): 1332.1342
DOI: 10.3844/jcssp.2025.1332.1342

1339

Differential Backup

Table (4) presents a comparison of duration and
throughput for the differential backup process using FCI,
AG, and FCI + AG configurations across various
hardware specifications. FCI + AG achieved the best
overall performance, with an average throughput of 7.33
GB/h and the highest throughput of 10.59 GB/h recorded
on the 6-core and 8 GB RAM configurations. AG
demonstrated good data transfer efficiency, with an
average throughput of 5.00 GB/h and an average

duration of 29.79 se, showing optimal performance on
the 4-core and 4 GB RAM configuration, which achieved
a throughput of 6.25 GB/h. FCI had the fastest average
duration of 27.50 sec with an average throughput of 3.02
GB/h, offering high speed without additional replication
overhead, with its best performance observed on the 6-
core and 6 GB RAM configurations. With the highest
throughput and additional data protection through
integrated failover and replication, FCI + AG emerges as
the best option for backup needs that prioritize efficiency
and data reliability.

Table 4: Comparison of differential backup

No. Spec (Proc &
Memory)

FCI AG FCI + AG
Duration
(s)

Throughput
(GB/hr)

Duration
(s)

Throughput
(GB/hr)

Duration
(s)

Throughput
(GB/hr)

1 4 Cores, 4 GB 27.03 3.05 29.40 6.25 30.03 7.22
2 4 Cores, 6 GB 27.63 3.03 31.73 5.64 31.20 6.48
3 4 Cores, 8 GB 27.27 2.85 28.63 5.86 29.03 5.91
4 6 Cores, 4 GB 27.47 3.13 30.90 5.43 29.87 4.66
5 6 Cores, 6 GB 26.37 3.10 27.73 5.33 32.70 3.49
6 6 Cores, 8 GB 28.70 2.83 28.70 2.83 29.87 10.59
7 8 Cores, 4 GB 27.93 3.03 30.33 4.84 31.50 9.94
8 8 Cores, 6 GB 27.80 3.06 31.13 4.52 28.60 9.22
9 8 Cores, 8 GB 27.33 3.06 29.57 4.32 28.40 8.47

Average 27.50 3.02 29.79 5.00 30.13 7.33

Table 5: Comparison of failover-failback performance

No. Spec (Proc & Memory) FCI AG FCI + AG
Auto Manual Failback Auto Manual Failback Auto Manual Failback

1 4 Cores, 4 GB 16.06 14.66 14.62 118.61 23.44 29.29 25.34 24.42 24.23
2 4 Cores, 6 GB 15.35 14.57 14.71 56.65 24.07 28.89 24.39 24.10 24.03
3 4 Cores, 8 GB 15.34 14.64 14.57 129.49 24.39 21.69 25.82 24.11 24.54
4 6 Cores, 4 GB 15.65 14.93 14.49 62.81 25.37 31.11 25.68 28.28 32.79
5 6 Cores, 6 GB 15.64 14.79 14.75 43.27 29.80 28.91 24.67 24.35 24.35
6 6 Cores, 8 GB 15.39 14.55 14.58 45.74 29.07 22.87 23.95 23.95 23.95
7 8 Cores, 4 GB 15.61 14.66 14.57 71.94 27.31 24.36 24.15 23.86 23.86
8 8 Cores, 6 GB 15.47 14.76 14.68 123.89 28.22 34.88 23.99 23.76 23.76
9 8 Cores, 8 GB 15.04 14.78 14.74 46.17 31.08 25.14 25.14 23.73 23.73
Average 15.51 14.70 14.63 77.62 26.97 27.46 24.76 25.03 25.03

Failover-Failback Performance

Table (5) compares the failover-failback performance
across FCI, AG, and FCI + AG configurations for
automatic, manual, and failback modes. The FCI
configuration recorded the fastest average times for all
modes, with automatic failover at 15.51 sec, manual at
14.70 sec, and failback at 14.63 sec, attributed to its
simple failover mechanism based on shared storage.

AG exhibited slower times for automatic failover
(77.62 sec) and manual failover (26.97 sec) due to the
synchronization process between replicas, with the
longest failback time (27.46 sec) resulting from the need
for full synchronization. FCI + AG achieved faster
failover times compared to AG, with an average
automatic failover time of 24.76 sec, manual failover at
25.03 sec, and failback at 25.03 sec, balancing FCI's
failover speed with AG's synchronization reliability. The

Faisal Rahman and Benfano Soewito / Journal of Computer Science 2025, 21 (6): 1332.1342
DOI: 10.3844/jcssp.2025.1332.1342

1340

combination of FCI + AG offers significant advantages
by providing competitive failover times while ensuring
high data protection, making it an ideal solution for
environments that require a balance between operational
speed and reliability.

The significant difference in automatic failover times
across configurations can be attributed to multiple
factors. In FCI, failover is nearly instantaneous because
it relies on shared storage, eliminating the need for
database synchronization. In contrast, AG experiences
delays due to transaction log replication overhead and
network latency. Since AG continuously synchronizes
database changes between replicas, failover time is
impacted by the volume of pending transactions at the
moment of failure.

High transactional loads increase the time required to
confirm consistency before promoting a secondary
replica to primary status. Additionally, network overhead
plays a crucial role, as AG failover involves log shipping
and acknowledgment messages between nodes, leading
to longer recovery times. FCI + AG reduces these delays
by leveraging FCI’s rapid instance-level failover while
maintaining AG’s database-level synchronization,
striking a balance between speed and data consistency.
However, the effectiveness of this approach still depends
on storage performance and network bandwidth, which
influence how quickly the system can resynchronize data
post-failover.

Availability Percentage

Based on the 30-day monitoring results, the Mean
Time Between Failures (MTBF) is calculated as 43,200
min (30 days × 24 h ×60 min). The Mean Time to
Recovery (MTTR) is derived from the average automatic
failover duration for FCI, AG, and FCI + AG, as shown
in Table (5).

FCI

The average failover duration is 15.51 sec (converted to
0.25 min).

MTTR = 7.5 min (30-day average × 0.25 min).
Availability percentage = 99.98%.

AG

The average failover duration is 77.62 sec (converted to
1.29 min).

MTTR = 38.7 min (30-day average × 1.29 min).

Availability percentage = 99.91%.

FCI + AG

The average failover duration is 24.92 sec (converted to
0.41 min).

MTTR = 12.3 min (30-day average × 0.41 min).

Availability percentage = 99.97%.
Table 6: Comparison of availability percentage

Feature Avg Auto
Failover (Minute)

MTBF
(Minute)

MTTR
(Minute)

Availability
(%)

FCI 0.25 43,200 7.5 99.98
AG 1.29 43,200 38.7 99.91
FCI+AG 0.41 43,200 12.3 99.97

Table (6) shows that the FCI + AG configuration is
the optimal choice for system availability. With an
average automatic failover time of 0.41 min and an
MTTR of 12.3 min, FCI + AG offers a balance between
recovery speed and data synchronization reliability.
Although its availability (99.97%) is slightly lower than
that of FCI (99.98%), this configuration provides better
data protection through AG replication, which FCI lacks.
By combining the fast failover capabilities of FCI with
the data protection of AG, FCI + AG emerges as an ideal
solution for environments requiring minimal downtime
and high reliability.

Conclusion
1. This study successfully combines the features of

SQL Always On Failover Cluster Instance (FCI)
and Availability Groups (AG) to increase database
availability.

2. Based on the server performance testing over 60
minutes, the combination of FCI + AG demonstrates
a balanced resource utilization, with CPU usage at
1.5391%, lower disk usage than AG at 0.0825%,
and the lowest memory usage among the three
configurations at 23.1686%. This combination can
be an appropriate option for achieving both resource
efficiency and improved performance.

3. Based on the full backup testing results, the use of
AG with a 6-core processor and 8 GB RAM
configuration achieved the fastest duration of
229.20 sec, with a throughput of 2,186.66 GB/h.
Meanwhile, for differential backup, the combination
of FCI + AG with the same 6-core processor and 8
GB RAM configuration recorded the fastest
duration of 29.87 sec, with a throughput of 10.59
GB/h

4. Based on the availability percentage calculation
over 30 days, the combination of FCI + AG
achieved a database availability rate of 99.97%.
This combination effectively leverages the fast
failover capabilities of FCI and the scalability of
AG.

Future Scope

In the current study, there are several limitations due
to constraints in time, budget, and the authors'

Faisal Rahman and Benfano Soewito / Journal of Computer Science 2025, 21 (6): 1332.1342
DOI: 10.3844/jcssp.2025.1332.1342

1341

perspectives. Many aspects can be further explored and
developed in greater depth. Recommendations for future
development include:

1. The combination of SQL Always On FCI and AG
involves a high level of complexity. During the
implementation process, it is crucial to clearly
separate the roles of FCI and AG, perform routine
system testing, and develop comprehensive
planning and documentation. This approach is
essential to ensure operational continuity and
minimize the risk of system failures, thereby
enabling the solution to operate optimally.

2. Conducting a comparative study between SQL
Always-On and other high availability solutions,
such as Oracle Data Guard or MariaDB Galera
Cluster, to evaluate their strengths and weaknesses
across various scenarios

Acknowledgment
The authors would like to express their gratitude to

the Department of Computer Science, Binus Graduate
Program, Bina Nusantara University, for providing the
resources and support required to carry out this research.
The authors also acknowledge the valuable feedback and
encouragement received from peers and colleagues
throughout the development of this manuscript.

Funding Information
This study was made possible through the generous

funding provided by Bina Nusantara University. The
authors express their heartfelt gratitude for the financial
support from the University's Research Fund, which was
instrumental in facilitating the research and enabling the
dissemination of the findings presented in this journal
paper.

Author’s Contributions
Faisal Rahman: Carrying out all the research,

performing the analysis, and writing the paper.

Benfano Soewito: Supervising the research and
reviewed the paper.

Ethics
This manuscript represents original work by the

authors and has not been published elsewhere. The
authors have thoroughly reviewed and approved the
content, confirming its accuracy and adherence to
academic standards. The research and publication
processes were conducted with a strong commitment to
integrity and ethical principles. No ethical issues or
conflicts of interest arose during this study. Furthermore,

we adhered to the ethical guidelines established by Bina
Nusantara University to ensure responsible conduct
throughout the research.

References
Carter, P. (2020). SQL Server 2019 Always On.
Chen, Y.-J., & Tsai, H. (2019). Implementation and

verification of high data availability on database.
Transactions on Networks and Communications,
7(5), 1-12.
https://doi.org/10.14738/tnc.75.7292

Cisco. (2024). What Is High Availability? Cisco.
https://www.cisco.com/c/en/us/solutions/hybrid-
work/what-is-high-availability.html

Khan, M. A., & Sabri, M. S. (2021). An Analysisof
Disaster Recovery with SQL Server Always On.
International Journal of Management, IT &
Engineering, 11(4), 17-26.

Kit, N. K. K., & Aibin, M. (2023). Study on High
Availability and Fault Tolerance. 2023
International Conference on Computing,
Networking and Communications (ICNC), 72-82.
https://doi.org/10.1109/icnc57223.2023.10074557

Lawrence, A., & Simon, L. (2023). Annual outages
analysis 2023. Uptime Institute.
https://datacenter.uptimeinstitute.com/rs/711-RIA-
145/images/AnnualOutageAnalysis2023.03092023.
pdf

Parui, U., & Sanil, V. (2016a). Availability Groups in
Microsoft Azure. 283-307.
https://doi.org/10.1007/978-1-4842-2071-9_18

Parui, U., & Sanil, V. (2016b). Introduction to Windows
Server Failover Clustering. 45-52.
https://doi.org/10.1007/978-1-4842-2071-9_5

Scotti, A., Hannum, M., Ponomarenko, M., Hogea, D.,
Sikarwar, A., Khullar, M., Zaimi, A., Leddy, J.,
Zhang, R., Angius, F., & Deng, L. (2016). Comdb2
Bloomberg's Highly Available Relational Database
System. Proceedings of the VLDB Endowment,
9(13), 1377-1388.
https://doi.org/10.14778/3007263.3007275

Shrestha, R., & Tandel, T. (2023). An Evaluation Method
and Comparison of Modern Cluster-Based Highly
Available Database Solutions. Proceedings of the
13th International Conference on Cloud
Computing and Services Science, 131-138.
https://doi.org/10.5220/0011714400003488

Zamanian, E., Yu, X., Stonebraker, M., & Kraska, T.
(2019). Rethinking database high availability with
RDMA networks. Proceedings of the VLDB
Endowment, 12(11), 1637-1650.
https://doi.org/10.14778/3342263.3342639

https://doi.org/10.14738/tnc.75.7292
https://www.cisco.com/c/en/us/solutions/hybrid-work/what-is-high-availability.html
https://www.cisco.com/c/en/us/solutions/hybrid-work/what-is-high-availability.html
https://doi.org/10.1109/icnc57223.2023.10074557
https://datacenter.uptimeinstitute.com/rs/711-RIA-145/images/AnnualOutageAnalysis2023.03092023.pdf
https://datacenter.uptimeinstitute.com/rs/711-RIA-145/images/AnnualOutageAnalysis2023.03092023.pdf
https://datacenter.uptimeinstitute.com/rs/711-RIA-145/images/AnnualOutageAnalysis2023.03092023.pdf
https://doi.org/10.1007/978-1-4842-2071-9_18
https://doi.org/10.1007/978-1-4842-2071-9_5
https://doi.org/10.14778/3007263.3007275
https://doi.org/10.5220/0011714400003488
https://doi.org/10.14778/3342263.3342639

Faisal Rahman and Benfano Soewito / Journal of Computer Science 2025, 21 (6): 1332.1342
DOI: 10.3844/jcssp.2025.1332.1342

1342

Zhang, Z., Tian, Y., Li, L., & Wang, Y. (2021). High
Availability Services of Client in Large-scale
Cluster System. Journal of Physics: Conference
Series, 1792(1), 012068.
https://doi.org/10.1088/1742-6596/1792/1/012068

https://doi.org/10.1088/1742-6596/1792/1/012068
https://doi.org/10.1088/1742-6596/1792/1/012068

