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Abstract: Problem statement: We propose a Bayesian method (RBP) to recursively infer the 
independence structure of epistatic interactions in case-control study. Approach: Based on the results of 
BEAM2, RBP can powerfully detect the marginal and conditional independence within interacting SNPs 
even in the complicated interaction cases. Results: We did extensive simulations to test RBP and 
compare it with stepwise logistic regression. Simulation results show that this approach is more powerful 
than stepwise logistic regression in detecting in marginal independence and conditional independence as 
well as more complicated dependence structure. We then applied BEAM2 and RBP on dbMHC Type 1 
Diabetes (T1D) data and we found in MHC region, genes DRB1 and DQB1 are associated with T1D 
with saturated interaction structure which is consistent with the current knowledge of haplotype effect of 
these two genes on T1D. Conclusion: RBP is a powerful method to infer detailed dependence structures 
in epistatic interactions. 
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INTRODUCTION 
 
 Recently the methodology of Genome-Wide 
Association (GWA) has been greatly improved 
(WTCCC, 2007a; Zhang and Liu, 2007; Zhang et al., 
2011; Yang et al., 2009). A Bayesian method (BEAM, 
Zhang and Liu, 2007) equipped with Monte Carlo 
algorithms has been shown able to powerfully detect 
high-order interactions in genome-wide association 
studies. This method uses Markov chain Monte Carlo 
(MCMC) to ‘interrogate’ each marker conditional on 
the current status of other markers iteratively.  But 
one drawback of BEAM is the assumption that SNPs 
are independent to each other, thus BEAM is not able 
to capture the block-wise structure of human 
genome. Zhang et al. (2011)  extended BEAM model 
to BEAM2, incorporating LD blocks into the original 
Bayesian partition model. This BEAM2 is able to 
simultaneously infer haplotype-blocks and select 

SNPs within blocks that are associated with the 
disease, either individually or through epistatic 
interactions with others across the genome. Using 
WTCCC1 type 1 diabetes data, BEAM2 identified 
the most previous reported associated SNPs and also 
landscaped the two-way interactions in MHC region. 
 Under the concept of common (complex) diseases, 
genetic variants typically show very little effect 
independently with low penetrance, but they may 
interact with each other in complex ways, i.e., they 
have complicated interacting structure, which is 
probably because of the sophisticated regulatory 
mechanisms encoded in the human genome (WTCCC, 
2007a; Chambers and Hastie, 1992; Yang et al., 2009; 
WTCCC, 2007b; Zhang et al., 2011; Ding et al., 2005a; 
2005b). Both BEAM2 and BEAM2 use a saturated 
model to model the interaction group, thus neither of 
them can infer the detail interacting structure. However, 
knowing the detail structure is very important for 
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investigating the etiopathogenesis and genetic 
mechanisms of the complex disease. 
 In this study, we propose a Bayesian method called 
Recursive Bayesian Partition (RBP) to recursively infer 
the marginal and conditional independence among 
interacting genetic markers. Given the associated 
markers inferred by BEAM2 or BEAM2, RBP first uses 
Independence Partition Model (IPM) to recursively 
infer all the marginally independent interaction groups, 
such that there is no interaction between/across 
different groups. That is, only within each group, there 
are some interactions. Then, RBP uses Chain-
Dependence Model (CDM) to recursively infer the 
conditional independence within each interaction group 
(Zhang et al., 2010). 
 Using simulations we showed our method is more 
powerful than stepwise logistic regression using AIC or 
BIC in both marginal independence and conditional 
independence detections. In the complicated interaction 
simulations, our method is much more powerful than 
stepwise logistic regression. We applied RBP to the 
dbMHC type 1 Diabetes (T1D) data and we found 
genes DRB1 and DQB1 are associated with T1D with 
saturated interaction structure which is consistent with 
the current knowledge of haplotype effect of these two 
genes on T1D (Steenkiste et al., 2007). 
 

MATERIALS AND METHODS 
 
 Recursive Bayesian Partition (RBP) we propose a 
Bayesian Partition model to search for independence 
groups and conditional independence among interacting 
SNPs. The whole procedure is done in two steps: first, 
we use Independence Partition Model (IPM) to partition 
all the interacting SNPs into several independence 
groups, i.e., there is no interactions across groups; 
thenwe use Chain-Dependence Model (CDM) to search 
for conditional independence within each groups. 
 Suppose there are Nd sequences in the case group 
and Nu sequences in the control group. Each sequence 
is p-SNP long and each SNP position i can take Li 
possible categories more generally, we can view each 
position as a random variable. Thus, our data consists 
of observations on each individual status (or response) 
variable Y, i.e., 0 for control and 1 for case and its p 
“explanatory” variables X1,…, Xp. 
 
Independence Partition Model (IPM): Our Bayesian 
Independence variable partition model seeks to partition 
the p variables into two groups: A and B. We say that 
the joint distribution for XG is a Independence Partition 
model if the index set G can be partitioned into disjoint 
subsets A and B, such that XA and XB are mutually 

independent, i.e., P(XG) = P (XA )P(XB ) . We let Π 
denote the partitioning, i.e., indicating which indices in 
G belong to which subset. 
 We let D denote n iid observations (n = Nd in cases 
and n = Nu in controls) on (XG) = (XA, XB). Suppose XA 
takes on AN possible values, follows the distribution 
Multinom (ΘA), where

A

A A
A 1 N( ,... )Θ = θ θ . The prior for ΘA 

is assumed to be the Dirichlet distribution with pseudo-
counts vector A A A

1 NA( ,.... )β = β β denoted as Dir (βA). In 

this study we letA
k A1 / Nβ = . Then let 

A

A A A
1 Nn (n ,...n )= , 

where A
kn is the number observations whose XA takes 

the kth categorical value. Integrating out the 
multinomial parameters, we obtain that Eq. 1: 
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where, we define  Γ (v) = Γ (v1) … Γ (vk) for  v = 
(v1,…,vk). The computation for p (DB|Π) is exactly the 
same as that for p (DA|Π). 
 Let NB be the number of possible values XB can 
take and let XB ~ Multinom (ΘB), with 

B B
1B NB( ,....., )Θ = θ θ . A Dirichlet (βB) prior distribution is 

imposed on ΘB, where B B B
1 NB( ,...., )β = β β . Let B

kn be the 

number of times XB takes on value k in our 
observations DB. Thus, we have Eq. 2: 
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Bayesian recursive model selection (Zhang et al., 
2010): In order to determine to include an 
independence model for control, we define a model 
indicator IC, which is equal to 1 if the variables 

1, , P{X X }
⋯

in controls have the same group membership 

as in cases and 0 if the variables in controls are all 
independent of each other, in which case we have: 
 

1, , P C j CP({X X }| I 0,Y 0) { P(X | I 0,Y 0)}= = = = =∏⋯

 

 
where, p (Xj|lc = 0,y = 0) is multinomial with 
probability vector Θj, Multinom( Θj) and Θj follows a 
Dirichlet distribution a priori with parameter aj = 
(aj1,aj2,…,ajGj). Integrating out the multinomial 
parameters, we obtain that Eq. 3: 
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(3)
 

 
 Here the operation |a| sums over all elements in a. 
 We assume an equal probability prior for IC. Then, 
we can write the joint distribution as (D here includes 
both case data and control data) Eq. 4: 
 

, C cP(D | I ,Y)p( )p(I )P(Y)∏ ∏
 (4) 

 
 In which p (D|Π,lc = 1,Y = 0), p (D|Π,lc = 0,Y = 1) 
and p (D|Π,lc = 1,Y = 1)are equal to expression (1) 
times (2) and p (D|Π,lc = 0,Y = 1) is equal to (3) . We 
use a MCMC algorithm to simulate from (4) so as to 
estimate the posterior distribution of IC and Π. After 
partitioning all the variables into A or B, we reapply the 
method to A and B superlatively. The procedure is 
applied recursively until only single-variable nodes are 
available and thus all the variables are grouped in 
several independent disjoint subsets. 
 
Chain-Dependence Model (CDM): After identifying 
all the independence groups, we use Chain-dependence 
Model to discover the conditional independence within 
each group. In the above IPM model, variables in A or 
B are not imposed any simplifying dependence 
structure, which in statistical term means that a “fully 
saturated” model was used. However, in practice often 
a much more desirable and simpler model, which takes 
advantage of conditional independence relationships 
among the variables, can fit the data well. In complex 
disease scenario, SNP1 could interact with SNP2, but 
does not directly interact with SNP3. SNP2 interacts 
with SNP3. Thus all the three SNPs are in the same 
independent group (i.e., IPM cannot separate them), but 
conditional on SNP2, SNP1 is conditionally 
independent of SNP3. Therefore, detecting conditional 
independence within each group can tell more detail 
about the relationship within each independence group. 
 We call it a chain-dependence model for a group of 
variables XG if the index set G can be partitioned into 3 
subgroups A, B and C such that XA and XC are 
independent given XB, denoted as XA  → XB → XC. 
Only set C is allowed to be empty, in which case this 
model degenerates to the saturated model. Under the 
chain-dependence model, we can decompose the joint 
distribution of XG as: p (XG) = p (XA) p (XA) p (XB | 
XA) p (XC |XB). We let Π denote the set partitioning. 
 Suppose XA takes on NA possible values, follows 
the distribution Multinom (ΘA), where, 

A

A A
A 1 N( ,...., )Θ = θ θ . The prior for ΘA is assumed to be the 

Dirichlet distribution with pseudo-counts vector 

A

A A A
1 N( ,..., )β = β β denoted as Dir (βA). Here we 

let A
k A1 / Nβ = . 

 Furthermore, suppose XB takes on NB possible 
values, we assume that P (XB|XA) is Multinom (ΘB|XA), 
where, 

A A B A

B B
B|X 1,X N ,X( , , )Θ = θ θ… . We let the prior distribution 

for (ΘB|XA) be Dir( )
A B

B|A
i|X i 1,...,N{ } =β . We set 

A

B / A
i / X A B1/(N N )β = in the study. Lastly, suppose XC take 

on NC possible values. Then, P (XC|XB) = Multinom 
(Θc|XB) and 

B B C

C|B
C|X i,X i 1, ,N~ Dir({ } )=Θ β

…

 a priori. Again, we 

set
B

C|B
i,X B C1/(N N )β = .  Suppose our data D consists of n 

iid observations on XG = (XA, XB, XC). We can 
summarize the data into counts corresponding to XA, 
XB| XA and | XC  XB and decompose the probability of 
the data conditional on the set partitioning  Π as P 
(D|Π) = P (DA|Π) p (DB| DA, Π) p (DC | DB, Π) 
accordingly. That is, we let 

A

A A A
1 Nn (n ,...,n )=  where A

kn  

is the number observations whose X A takes the kth 
categorical value. Integrating out the multinomial 
parameters, we obtain that Eq. 5: 
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where, we define Γ (v) = Γ (v1) … Γ (vk) for v = 
(v1,…,vk). Similarly, we obtain that Eq. 6: 
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Thus, 
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 Thus, the probability of the observed data conditional 
on the set partitioning Π is the product of (5-7) Eq. 8: 
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Table 1: Interaction Models 
Risk  A/A A/a a/a 
Model 1 
B/B 1 1 1 
B/b 1 (1+q)2 (1+q)3 
b/b 1 (1+q)3 (1+q)4 
Model 2 
Risk  A/A A/a a/a 
B/B 1 1 1 
B/b 1 1+q 1+q 
b/b 1 1+q 1+q 
Model 3 
Risk  A/A A/a a/a  
B/B 1 1 1 

B/b 1 ( )1 2

1 2

p p
1 1

4q q

 
− − θ 

 

               ( )2

2

p
1 1

2q

 
+ − θ 

 

 

b/b 1 ( )1 2

1 2

p p
1 1

4q q

 
− − θ 

 
 q 

Two-locus interaction models with no marginal effect p1 = p (A) = 1 
–q1 and  p2 = p (B) = 1-q2 
 
 Thus, if we assign a prior on Π, such as uniform, 
we obtain its posterior distribution by combining the 
prior with (8). We then design an MCMC algorithm to 
sample from this posterior distribution. 
 Like IPM, we first partition variables into three 
disjoint subsets which follow the above chain-dependence 
model and then recursively apply this partition until the 
data do not allow us to discern more model details.  
 
Simulations from HapMap data: We did three sets of 
simulations to evaluate the powers of IPM, CDM and 
RBP and compared them with stepwise logistic 
regressions by AIC and BIC. First, we simulated two 
independent interaction groups Fig. 7a, conditional 
independent group Fig. 7b for IPM and CDM respectively. 
And then we simulated complicated interactions which 
contains 9 independent groups: 6 of them are composed of 
two-locus interactions Fig. 7a following three different 
disease models in Table 1-3 of them are composed of 
three-loci conditional independent interactions Fig. 7b 
with pairwise interactions (like interaction between D1 
and D2, interaction between D2 and D3 in Fig. 5b 
following three different disease models in Table 1. For 
details see the following sections. 
 
Three different disease interaction models: We 
simulated case control data according to 3 disease 
models given in Table 1. There are 2 disease loci 
involved in each model. In model 1, the disease risk is 
present only when both disease loci contain some 
mutations and the disease risk increases as the number 
of mutations increases. In model 2, the disease risk is 
again present only when both disease loci contain some 
mutations, but the risk is a constant corresponding to a 
threshold model. In model 3, there is no marginal effect 
but only interactions for two loci. 

Marginal independent groups simulation for IPM: 
For marginal independent groups A and B, (Group A 
and Group B are marginally independent in both 
populations (Y =1case and Y = 0 control)), the odds 
can be written as: 
 

AB

P(Y 1| AB) P(Y 1) P(AB | Y 1) P(Y 1) P(A | Y 1) P(B | Y 1)
w

P(Y 0 | AB) P(Y 0) P(AB | Y 0) P(Y 0) P(A | Y 0) P(B | Y 0)

= = = = = == = =
= = = = = =

 

 
 The odds ratio of a mutant type AB to wildtype   A0 
B0 is: 
 

AB

0 0A0B0

0 0

0 0

0 0

A B

A0 B0

p(Y 1) P(A | Y 1) P(B | Y 1)
W p(Y 0) P(A | Y 0) P(B | Y 0)

p(Y 1) P(A | Y 1) P(B | Y 1)W
p(Y 0) P(A | Y 0) P(B | Y 0)

P(Y 1| A) P(Y 1| B)
P(Y 0 | A) P(Y 0 | B)

P(Y 1| A ) P(Y 1| B )
P(Y 0 | A ) P(Y 0 | B )

W W

W W

= = =
= = == =

= = =
= = =

= =
= =

= =
= =

=

 

 
 Which is the product of odds ratios of two groups. 

After taking log arithm, AB A B

0 0 A0 B0

w w w
log log log

wA B w w
= +  

There are two SNPs in group A and B following Model 
1, 2 or 3 Table 1. 
 
Conditional independent group simulation for 
CDM: For conditional independence, A and C are 
conditionally independent given B, the odds ratio for 
three groups A, B and C, is  

0 0 0 0 0 0 0 0

ABC B AB BC

A B C B A B B C

w w w w

w w w w
=  So 

logarithm of odds ratio is 

0 0 0 0 0 0 0 0

ABC B AB BC

A B C B A B B C

w w w w
log log log log

w w w w
= + + .  

 

 There is one SNP in group A, B and C, the interaction 
model of AB and BC follows Model1, 2 or 3 Table 1. 
 
Complicated interaction simulation for RBP: Finally 
we simulated a complicated interaction data which 
contains multiple marginal independent groups and 
within some groups there are conditional independence 
interactions. The logarithm of odds ratio is the 
summation of all the marginal independence groups and 
conditional independence groups. In our simulation 
there are totally 21 SNPs in 6 two-locus marginal 
independence groups and 3 three-locus conditional 
independence groups. 
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Simulations with block structures and interactions: 
To simulate case control data, we first randomly select 
a region in the human genome that contains 1000 
tagged SNPs in Illumina HapMap 300k tagSNPs. We 
then use HAPGEN (Marchini et al., 2007) to generate a 
pool of 10000 individuals and their genotypes within 
the region for tagged SNPs using HapMap European 
individuals (parents only). Four SNPs are then 
randomly selected as disease loci for marginal 
independence simulations and three SNPs are selected 
for conditional independence simulations. We choose 
the disease allele frequency in the population to be 
0.05, 0.10, 0.20 and 0.50, respectively and we specify 
the marginal effect size (log odds ratio-1) of each 
disease loci to be 0.5 for Model 1 and 2 (θ = 0.5 in 
Table 1) and for Model 3 there is always no marginal 
effect, so we set interaction effect (Yang et al., 2009) 
parameter θ = 0.5. Given these parameters, we calculate 
the joint allele frequencies of both disease loci in cases 
and controls using the same method used in BEAM 
(Zhang and Liu, 2007) and BEAM2 (Zhang et al., 
2011). We then randomly sample 2000 cases and 
2000 controls according to the disease allele 
frequencies from the pool of 10000 individuals 
without replacement. 
 In the same way, we simulated a complicated 
interaction case-control data, where 21 SNPs are 
selected for 9 independent groups. Totally 6 groups 
follow two-locus interaction models (2 groups for each 
of Model 1, 2 and 3 in Table 1). 3 groups arecomposed 
of three-locus conditional independent interactions (one 
group for each of Model 1, 2 and 3 in Table 1). 
 

RESULTS AND DISCUSSION 
 
Results of simulations from HapMap: We simulated 
case control data from HapMap data (see Methods) 
under three disease models and compared the power of 
IPM, CDM and RBP with stepwise logistic regression 
(Chambers and Hastie, 1992) using AIC and BIC. We 
first used BEAM2 (Zhang et al., 2011) to search for 
associated SNPs.  We ranked SNPs in each dataset 
according to their association posterior probabilities, 
then calculate the power of each program from 50 
datasets. The power is defined as the fraction of disease 
related SNPs ranked among the top ranked SNPs. A 
SNP is regarded as disease related if it is within 5 SNPs 
on either side of a true disease locus. The results are 
shown in Fig. 1 for marginal independence and Fig. 2 
for conditional independence simulations. 
 Consistent with the simulation results from Zhang 
et al. (2011) , we observed that BEAM2 can identify 
most of the associated SNPs with good power for 

Model 1 and 2, but the performance for Model 3 is 
worse than the other two due to the fact there is no 
marginal effect in Model 3 at all. 
 
Results for IPM and CDM compared with stepwise 
logistic regression: Then we focus on the associated 
SNPs (four in marginal independence simulations and 
three in conditional independence simulations) and 
compare the powers of IPM and CDM with stepwise 
logistic regression for correctly identifying interacting 
structures  (marginal independence groups and 
conditional independence). For marginal independence 
simulations (see Methods), Fig. 3 show the powers of 
IPM and stepwise logistic regression (general model, 
i.e., genotypes are treated as categorical variables and 
additive model, i.e., genotypes (AA, Aa, aa) are treated 
as 0, 1, 2 numerical variables) using AIC and BIC. For 
conditional independence simulations, Fig. 4 shows the 
powers of CDM and stepwise logistic regression 
(general and additive models). Here IPM and CDM 
only report the model with highest posterior probability 
and stepwise logistic regression starts from the model 
with all the main effect terms, greedily adding or 
deleting one term at each step, until AIC or BIC stop 
dropping. The final model is reported by stepwise 
logistic regression. Then the power is calculated as the 
fraction of correctly inferred the interacting structures 
(models) among all the 50 simulated datasetsunder each 
parameter settings. From Fig. 3 and 4, it is clear that IPM 
or CDM outperform stepwise logistic regression in most 
parameter settings. And BIC is more powerful than AIC. 
 
Results for RBP compared with stepwise logistic 
regression: Then we simulated a complicated 
interaction model to access the power of RBP (see 
Methods). In this simulation, there are totally 21 
disease-associated SNPs in 6 two-locus marginal 
independence groups (2 for each of the models in Table 
1) and 3 three-locus conditional independence groups 
(one for each of the models in Table 1.  RBP first uses 
IPM to infer the independence groups and then uses 
CDM to infer conditional independence within each 
group. Figure 5 shows the power boxplot of RBP for 50 
simulation datasets. The power is the fraction of SNPs 
whoseinteractions are correctly inferred (i.e., the 
SNPs are inferred in the correct independent group 
with correct neighbors and relationships). It is clear 
that as interaction parameter (θ) increases, the power 
substantially increase and the minor allele 
frequencies (f) make little difference except that 
when f = 0.5, there is a big drop in power. We also 
tried stepwise logistic regression on these 
simulations, but due to complicated interactions, 
neither AIC or BIC (general model or additive 
model) can have positive power. 
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Fig. 1: Power curves of BEAM2 on marginal independence simulations. Under each setting, the power is calculated 

as the proportion of disease-associated SNPs in 50 datasets identified within 5 SNPs from the top m SNPs 
ranked by posterior probability (m ranges from 1-100). Each data set contains 1,000 SNPs in 1000 cases and 
1000 controls. The disease allele frequency in the population is 0.05 (pink), 0.10 (blue), 0.20 (green) and 
0.50 (red), respectively 

 

 

 

 
 
Fig. 2: Power curves of BEAM2 on conditional independence simulations. Under each setting, the power is 

calculated as the proportion of disease-associated SNPs in 50 datasets identified within 5 SNPs from the top 
m SNPs ranked by posterior probability (m ranges from 1-100). Each data set contains 1,000 SNPs in 1000 
cases and 1000 controls. The disease allele frequency in the population is 0.05 (pink), 0.10 (blue), 0.20 
(green) and 0.50 (red), respectively 
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Fig.3: For marginal independence simulations (see Methods), Fig. 3 show the powers of IPM and stepwise logistic 

regression (general model, i.e., genotypes are treated as categorical variables and additive model, i.e., 
genotypes (AA, Aa, aa) are treated as 0, 1, 2 numerical variables) using AIC and BIC. Theta is the interaction 
parameter θ in Table 1. MAF is minor allele frequency 

 

 
 

 
 

 
 
Fig. 4: For conditional independence simulations, Figure 4 shows the powers of CDM and stepwise logistic 

regression (general and additive models) using AIC or BIC. Theta is the interaction parameter θ in Table 1. 
MAF is minor allele frequency 
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Fig. 5: Shows the power boxplot of RBP for 50 complicated interaction simulation datasets under different 

parameter settings 
 

       
 (a) (b) 
 
Fig. 6: (a) SNP-wise posterior probabilities for dbMHC T1D data using BEAM2 and SNPs with posterior 

probabilities >0.5 are numbered. The dbMHC samples were collected from over 20 populations worldwide, 
among which 1473 individuals had unknown origins. To avoid potential confounding effects of the 
population structure, we only used data from the Swedish population, which contained 665 cases and 524 
controls. Dot indicates the marginal posterior probability of association per SNP and circle indicates the 
total posterior probability of association per SNP (marginal plus joint). We connect the dot and circle for 
each SNP for better illustration; (b) The procedure of RBP. First we applied IPM to all of the 28 associated 
SNPs. Only the 25th SNP comes out independently of all the others. Then reapplying IPM to the rest of 27 
SNPs, only the 24th SNP is independent of the other 26 SNPs. When reapplying IPM to the rest 26 SNPs, 
no independence was found (posterior probability >0.9). Then we applied CDM to the 26-SNP group, again 
no conditional independence was found (posterior probability >0.9) 

 
Validation of RBP with dbMHC T1D data: We used 
T1D data from dbMHC 
(http://www.ncbi.nlm.nih.gov/gv/mhc/) to validate our 
RBP method. The data contained resequenced haplotypes 
of exons of two MHC genes DRB1 and DQB1. Since it 
is well-known that in HLA DQ-DR region SNPs form 
associated haplotypes rather than interactions, RBP 
should find most associated SNPs in this region cluster in 
one big marginal independent group and no conditional 

independence within the group. We first applied BEAM2 
to search for associated SNPs with posterior probabilities 
>0.5.  Figure 6a shows the posterior probabilities and 
number SNPs with posterior probabilities >0.5. Then 
we applied RBP to detect marginal independence and 
conditional independence recursively.  Figure 6b shows 
the procedure of RBP. First we applied IPM to all of the 
28 associated SNPs. Only the 25th SNP comes out 
independently of all the others.  
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(a) 

  

 
 (b) 
 
Fig. 7: (a) The illustration of marginal independence 

simulations (Ding et al., 2005a). To simulate 
case control data, we first randomly select a 
region in the human genome that contains 1000 
tagged SNPs from HapMap. Four SNPs (D1, D2, 
D3, D4) are then randomly selected as disease 
loci for two marginal independent groups 

 
 Then reapplying IPM to the rest of 27 SNPs, only 
the 24th SNP is independent of the other 26 SNPs. When 
reapplying IPM to the rest 26 SNPs, no independence 
was found (posterior probability >0.9). Then we applied 
CDM to the 26-SNP group, again no conditional 
independence was found (posterior probability >0.9). So 
our results show that DQB1 and DRB1 do form 
associated haplotypes, rather than interactions. 
 

CONCLUSION 
 

 In this study, we proposed a Bayesian method 
called RBP to recursively infer the interaction structure 
from case-control data. The method is composed of two 
steps: in the first step IPM was recursively used to infer 
the marginal independent groups; in the second step 
CDM was recursively used to infer the conditional 
independence within each independent group inferred 
from the first step. To our knowledge this is the first 
method to infer the dependence structure of interaction 
in GWAS recursively. We then designed several 
simulation studies to test IPM, CDM and RBP using 
marginal independence simulations, conditional 
independence simulations and complicated interaction 
simulations based on HapMap data and block 
structures. Using these extensive simulations we 
showed our method is more powerful than stepwise 
logistic regression using AIC or BIC in both marginal 
independence and conditional independencedetections. 
In the complicated interaction simulations, our method 

is much more powerful than stepwise logistic 
regression. We also validated RBP using dbMHC T1D 
data and showed DQB1 and DRB1 form strong 
associated haplotypes for T1D. 
 Although this type of Bayesian recursive partition 
idea has been successfully used in several difference 
scenarios (Zhang et al., 2010; Svicher et al., 2011a; 
2011b) the current RBP model can be further improved 
in several ways. First, this model does not consider 
missing genotypes and unobserved SNPs in the case-
control sample, but this can be treated via imputation or 
EM algorithm incorporated in RBP model. Previous 
studies have shown that imputing untyped SNPsand 
missing genotypes from a reference panel can improve 
the power of disease association mapping (Svicher et 
al., 2011a). Second, the current model only considers 
one case and one control data. Actually RBP model can 
be improved to incorporate multiple case-control 
datasets and improving the detecting power since 
related information can be borrowed from multiple 
case-control datasets. We are now developing new 
statistical methods for these improvements. 
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