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Abstract: Problem statement: We propose a Bayesian method (RBP) to recursivefgr ithe
independence structure of epistatic interactionsasge-control studyApproach: Based on the results of
BEAM2, RBP can powerfully detect the marginal andditional independence within interacting SNPs
even in the complicated interaction casResults We did extensive simulations to test RBP and
compare it with stepwise logistic regression. Satiah results show that this approach is more piver
than stepwise logistic regression in detecting argimal independence and conditional independesice a
well as more complicated dependence structure.hate applied BEAM2 and RBP on dbMHC Type 1
Diabetes (T1D) data and we found in MHC region,egeBDRB1 and DQB1 are associated with T1D
with saturated interaction structure which is cstesit with the current knowledge of haplotype dftefc
these two genes on T1DBonclusion: RBP is a powerful method to infer detailed depecdestructures

in epistatic interactions.

Key words: Type 1 Diabetes (T1D), Recursive Bayesian Parti{fRBP), Genome-Wide Association
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INTRODUCTION SNPs within blocks that are associated with the
disease, either individually or through epistatic
Recently the methodology of Genome-Wideinteractions with others across the genome. Using
Association (GWA) has been greatly improved WTCCCL1 type 1 diabetes data, BEAM2 identified
(WTCCC, 2007a; zhang and Liu, 2007; Zhastgal.,  the most previous reported associated SNPs and also
2011; Yanget al., 2009). A Bayesian method (BEAM, landscaped the two-way interactions in MHC region.
Zhang and Liu, 2007kquipped with Monte Carlo Under the concept of common (complex) diseases,
algorithms has been shown able to powerfully detectjenetic variants typically show very little effect
high-order interactions in genome-wide associationndependently with low penetrance, but they may
studies. This method uses Markov chain Monte Carlanteract with each other in complex ways, i.e.,ythe
(MCMC) to ‘interrogate’ each marker conditional on have complicated interacting structure, which is
the current status of other markers iterativelyut B probably because of the sophisticated regulatory
one drawback of BEAM is the assumption that SNPsnechanisms encoded in the human genome (WTCCC,
are independent to each other, thus BEAM is no¢ abl2007a; Chambers and Hastie, 1992; Yangl., 2009;
to capture the block-wise structure of humanWTCCC, 2007b; Zhangt al., 2011; Dinget al., 2005a;
genome. Zhangt al. (2011) extended BEAM model 2005b). Both BEAM2 and BEAM2 use a saturated
to BEAM2, incorporating LD blocks into the original model to model the interaction group, thus neitber
Bayesian partition model. This BEAM2 is able to them can infer the detail interacting structurewsduwer,
simultaneously infer haplotype-blocks and selectknowing the detail structure is very important for
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investigating the etiopathogenesis and genetigndependent, i.e., Pg = P (X )P(Xs ) . We letl

mechanisms of the complex disease. denote the partitioning, i.e., indicating which icek in
In this study, we propose a Bayesian method called belong to which subset.
Recursive Bayesian Partition (RBP) to recursivalgi We let D denote n iid observations (n ziN cases

the marginal and conditional independence amongnd n = N in controls) on (§) = (Xa, Xg). Suppose X
interacting genetic markers. Given the associatethkes on 4 possible values, follows the distribution
markers inferred by BEAM2 or BEAM2, RBP first uses Multinom (©n), Where, =(67,..8% ). The prior foro,
!ndependence Pgrtltlon Model (IPM) to recurswelyis assumed to be the Dirichlet distribution wittepdo-
infer all the marginally independent interactiomgps, ounts vectorp® = (8,6 ydenoted as Dir@). In
such that there is no interaction between/acros§ .u v B =B Brn) ! '
different groups. That is, only within each grotigere  this study we leB; =1/N,. Then letn* = (... ),
are some interactions. Then, RBP uses Chainghere n?is the number observations whosg dakes
Dependence Model (CDM) to recursively infer the the kth categorical value. Integrating out the

conditional independence within each interactioougr : : ; .
(Zhanget al., 2010). multinomial parameters, we obtain that Eq. 1:

Using simulations we showed our method is more a R
powerful than stepwise logistic regression using Ar PO, I[] )= r(n B ) F(IB I)
BIC in both marginal independence and conditional r(in* 1+8* ) T (")
independence detections. In the complicated intierac r(n: +2) r(z Ny 2)
simulations, our method is much more powerful than ﬂ e ] YT
stepwise logistic regression. We applied RBP to the."" F(Bk) r(“J’ZKil K)
dbMHC type 1 Diabetes (T1D) data and we found
genes DRB1 and DQBL1 are associated with T1D withwhere, we definel” (v) =T (v1) ... T (v) for v =
saturated interaction structure which is consisteith (v, ... \;). The computation for p () is exactly the
the current knowledge of haplotype effect of the8e  g5me as that for p @).

genes on T1D (Steenkisteal., 2007). Let N3 be the number of possible valueg ¥an
take and let X ~ Multinom @g), with
0, =(6%,....08%, ). A Dirichlet (8%) prior distribution is

Recursive Bayesian Partition (RBP) we propose dmposed onBg, where §° = (B..... 8%, ). Let n¢ be the
Bayesian Partition model to search for independenceumber of times X takes on value k in our
groups and conditional independence among inteigicti observations B. Thus, we have Eq. 2:

SNPs. The whole procedure is done in two stepst, fir

1)

MATERIALSAND METHODS

we use Independence Partition Model (IPM) to dartit r(n*+p*) (e )

all the interacting SNPs into several independenceé®®:I[] Fm 1)

groups, i.e., there is no interactions across @gpup (2)
thenwe use Chain-Dependence Model (CDM) to search

for conditional independence within each groups. Bayesian recursive model selection (Zhang et al.,

Suppose there aregdequences in the case group2010): In order to determine to include an
and N, sequences in the control group. Each sequendadependence model for control, we define a model
is p-SNP long and each SNP position i can thke indicator k, which is equal to 1 if the variables
possible categories more generally, we can vievih eac{x, x } in controls have the same group membership
position as a random variable. Thus, our data esi 55 in cases and O if the variables in controls sdre
of observations on each individual status (or raspd independent of each other, in which case we have:
variable Y, i.e., 0 for control and 1 for case atsdp
“explanatory” variables X..., Xp.

PX, X311 c=0,Y =0) { [PP(X ]I ;=0,Y =0)}
Independence Partition Model (IPM): Our Bayesian
Independence variable partition model seeks tatjpart where, p (. = 0,y = 0) is multinomial with
the p variables into two groups: A and B. We sat th probability vector®;, Multinom( ©;) and ©; follows a
the joint distribution for % is a Independence Partition Dirichlet distribution a priori with parameter; &
model if the index set G can be partitioned ingjant  (§1,82,...,8gj). Integrating out the multinomial
subsets A and B, such that Xand X are mutually parameters, we obtain that Eq. 3:
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e [[erm +a,)| T D Dirichlet distribution with pseudo-counts vector
P(X1~~XP|'C‘O'Y‘O)‘D {L_! Fa, [T+l ] ( B*=(B,..B,, )denoted as Dir [). Here we
letpl =1/N, .
Here the operation |a| sums over all elements in a Furthermore, suppose gXtakes on | possible

We assume an equal probability prior fer Then,  values, we assume that Pg(X,) is Multinom @ga),
we can write the joint distribution as (D here int#s  where,o,, =(, ..., 62, )- We let the prior distribution
both case data and control data) Eq. 4: e T

for (@gx) be Dir({B}. ). We set
POI[]. . p(] Ir()IPY) @) fe. =1/(N,Ng)in the study. Lastly, supposecXake
on N¢ possible values. Then, P {Xg) = Multinom

In which P (Onl.=1Y=0),p((ONl.=0Y=1) (Oc|Xs) and o, ~Dirgps}, ,) & Priori. Again, we
and p (OM,lc = 1,Y = l)are equal to expression (1) set3®® =1/(N,N.). Suppose our data D consists of n
times (2) and p (D],Ic = 0,Y = 1) is equal to (3) . We id observations on X = (Xa Xs X

= (Xa, Xg, Xc). We can
use a MCMC algon.thm .to ,S'm‘,“ate from (4) so as to Osummarize the data into counts corresponding o X
estimate the posterior d|str|_but|on of and M. After Xg| Xs and | % Xs and decompose the probability of
partglodnmg all thedvarlables |Int0A]0r Br’] we r@dgpéhe the data conditional on the set partitioniig as P
method to A and B superlatively. The procedure is
(DIN) = P (D) p (Bs| Da, M) p (Dc | Bg, M)

applied recursively until only single-variable nsdare : . K
available and thus all the variables are grouped ifccordingly. Thatis, we lea® =(n....f, ) where n
several independent disjoint subsets. is the number observations whose Xtakes the kth

categorical value. Integrating out the multinomial

Chain-Dependence Model (CDM): After identifying ~Parameters, we obtain that Eq. 5:
all the independence groups, we use Chain-depeadenc
Model to discover the conditional independence iwith r(nA +BA) r(|[3A |)
each group. In the above IPM model, variables iarA P, I[] )= r(in 1+8* ) (3
B are not imposed any simplifying dependence
structure, which in statistical term means thatly v (g +67) "(Z K Q)
saturated” model was used. However, in practicenoft H r(s) r(n+zgg1[3§)'
a much more desirable and simpler model, whichstake
advantage of conditional independence relationships
among the variables, can fit the data well. In clexp Where, we defind™ (v) =T (vy) ... I (w) for v =
disease scenario, SNP1 could interact with SNP2, byVa---,Vi). Similarly, we obtain that Eq 6:
does not directly interact with SNP3. SNP2 intesact
with SNP3. Thus all the three SNPs are in the same (nE™ + B2 (g% 1)
independent group (i.e., IPM cannot separate thbut), PO 10, [] )= ﬂ{r(n SEIB D FBB'A)} (6)
conditional on SNP2, SNP1 is conditionally
independent of SNP3. Therefore, detecting condition _ )
independence within each group can tell more detaivhere, ni* =i, ... )with nf*  recording the
about the relationship within each independencegro number of observations in which,X= | and X% = j
We call it a chain-dependence model for a group offhus, |nf* k f* +.-+ 4, = i . Finally, we get Eq. 7:
variables X if the index set G can be partitioned into 3
subgroups A, B and C such thaty Xand X are .
independent given X denoted as X - Xg - Xc.  po. b, 1)< [3 r (g +p5®) T (5")) (7)
Only set C is allowed to be empty, in which cass th r! (n®+[Be®]) T (B5"°)
model degenerates to the saturated model. Under the
chain-dependence model, we can decompose the joint
distribution of XG as: p (¥) = p (Xa) p (Xa) p (X& |
Xa) p (Xc |Xg). We letl denote the set partitioning.
Suppose X takes on N possible values, follows
the  distribution  Multinom  ®,), where, P®@..D B[] )=P@ [ P®R
=(87,....8, ). The prior for®, is assumed to be the |D,,[1 )P@. 1D, ] ) (8)

3

(5)

Thus, the probability of the observed data comwki
on the set partitionin{ is the product of (5-7) Eg. 8:
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Table 1: Interaction Models Marginal independent groups simulation for |PM:
Risk AIA Ala a/a For marginal independent groups A and B, (Group A
'é"/gde' ! 1 1 1 and Group B are marginally independent in both

+ + opulations (Y =1case an = 0 control)), the odds
B/b 1 (1q3 (1q)3 pp't Y =1 dy 0 trol th dd
b/b 1 (1+q§ (1+gf ~ can be written as:
Mode 2
Risk AA Ala ala W ZP(Y=1]AB) _ P(Y=1) P(AB|Y=1)_ P(¥= 1) P(A|¥= 1) P(B|¥ 1
B/B 1 1 1 % “P(Y=0|AB) P(Y=0)P(AB|Y= 0) P(Y= 0)P(A|¥= 0)P(B|¥
B/b 1 1+q 1+q
b/b 1 1+q 1+q . .
Modd 3 The odds ratio of a mutant type AB to wildtype, A
Risk AIA Ala ala Bgis:
B/B 1 1 1
B/b . (1- 22 o-o) (242 0-0) p(Y =1) P(A|Y=1) P(B|Y= 1)

Wee _ P(Y=0)PAIY=0)P(B|Y=0) _
b/b 1 [1—%(1—9)] q W, P(Y=1) P(A |Y=1) P(B |Y=1)
2

p(Y =0) P(A, [ Y=0) P(§ | Y= 0)

Two-locus interaction models with no marginal effpc=p (A) = 1

-qeand p=p (B)=1q P(Y=1|A) P(Y=1|B)

P(Y=0|A)P(Y=0]|B)

Thus, if we assign a prior diil, such as uniform, P(Y=1|A,) P(Y=1|B)
we obtain its posterior distribution by combininget P(Y=0|A)P(Y=0|B)
prior with (8). We then design an MCMC algorithm to W W
sample from this posterior distribution. =—A B

WAOWBO

Like IPM, we first partition variables into three
disjoint subsets which follow the above chain-delesce
model and then recursively apply this partitioniluttie Which is the product of odds ratios of two groups.
data do not allow us to discern more model details.

After taking log arithm,logh =log Wa Iogh
WAO 0 WAO WBO

Simulations from HapM ap data: We did three sets of i )
simulations to evaluate the powers of IPM, CDM and] here are two SNPs in group A and B following Model
RBP and compared them with stepwise logisticl: 2 ©r 3 Table 1.

regressions by AIC and BIC. First, we simulated two . _ ) _
independent interaction groups Fig. 7a, conditionacOnditional independent group simulation for
independent group Fig. 7b for IPM and CDM respetfiv CDM_:_ For cpnd|t|0nal mde_pendence, A and C are
And then we simulated complicated interactions twhic conditionally independent given B, the odds rato f
contains 9 independent groups: 6 of them are comdpoks  three groups A, B and C, isWasc - We Wae Wee  So

two-locus interactions Fig. 7a following three eifint _ Wageo  Weo Wapo Weg,

disease models in Table 1-3 of them are composed ##garithm of odds ratio Is
three-loci conditional independent interactions. Fifp  1og—"sc = jog Ve + jog Va8 4 jog Vec .

with pairwise interactions (like interaction betwe®1 Wape, W, Wap,  Weg,

and D2, interaction between D2 and D3 in Fig. 5b

following three different disease models in TableFtr There is one SNP in group A, B and C, the interact
details see the following sections. model of AB and BC follows Modell, 2 or 3 Table 1.

Three different disease interaction models. We

simulated case control data according to 3 diseasgompl'cated |nteract|on_5|mulat|_on for RBP' Finally .
models given in Table 1. There are 2 disease locf'® s!mulated_ a comph_cate(_j interaction data which
involved in each model. In model 1, the diseaseigs Ccontains multiple marginal independent groups and
present only when both disease loci contain SOméwthm some groups there_z are conditional mqlepgnden
mutations and the disease risk increases as theetum interactions. The logarithm of odds ratio is the
of mutations increases. In model 2, the diseaseisis summation of all the marginal independence grougs a
again present only when both disease loci contimes ~conditional independence groups. In our simulation
mutations, but the risk is a constant correspontiing  there are totally 21 SNPs in 6 two-locus marginal
threshold model. In model 3, there is no margifiteice  independence groups and 3 three-locus conditional
but only interactions for two loci. independence groups.
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Simulations with block structures and interactions: Model 1 and 2, but the performance for Model 3 is
To simulate case control data, we first randomlgcte worse than the other two due to the fact thereas n
a region in the human genome that contains 100@narginal effect in Model 3 at all.

tagged SNPs in lllumina HapMap 300k tagSNPs. We

then use HAPGEN (Marchimt al., 2007) to generate a Results for IPM and CDM compared with stepwise
pool of 10000 individuals and their genotypes withi logistic regression: Then we focus on the associated
the region for tagged SNPs using HapMap EuropeaB®NPs (four in marginal independence simulations and
individuals (parents only). Four SNPs are thenthree in conditional independence simulations) and
randomly selected as disease loci for marginarompare the powers of IPM and CDM with stepwise
independence simulations and three SNPs are slectiogistic regression for correctly identifying ingeting

for conditional independence simulations. We choosétructures  (marginal independence groups and
the disease allele frequency in the population ¢o bcpnd|thnal independence). qu marginal indepeneenc
0.05, 0.10, 0.20 and 0.50, respectively and weifspec Simulations (see Methods), Fig. 3 show the powérs o
the marginal effect size (log odds ratio-1) of eachlPM and stepwise logistic regression (general model
disease loci to be 0.5 for Model 1 and® 0.5 in i.e., genotypes are treated as categorical vasadnhg

: . _additive model, i.e., genotypes (AA, Aa, aa) aeated
Table 1) and for Model 3 there is always no margina : ; .
effect, so we set interaction effect (Yaagal., 2009) as 0, 1, 2 numerical variables) using AIC and B0t

6 = . h lcul conditional independence simulations, Fig. 4 shthes
parameted = 0.5. leen_t ese parameters, we calcu at'?)owers of CDM and stepwise logistic regression
the joint allele frequencies of both disease lactases general and additive models). Here IPM and CDM

and controls using the same method used in BEA nly report the model with highest posterior pratitgb
(Zhang and Liu, 2007) and BEAM2 (Zharey al.,  and stepwise logistic regression starts from theleho
2011). We then randomly sample 2000 cases angith all the main effect terms, greedily adding or
2000 controls according to the disease allelejeleting one term at each step, until AIC or BlGpst
frequencies from the pool of 10000 individuals dropping. The final model is reported by stepwise
without replacement. logistic regression. Then the power is calculatedhe

In the same way, we simulated a complicatedraction of correctly inferred the interacting stiures
interaction case-control data, where 21 SNPs arémodels) among all the 50 simulated datasetsurater e
selected for 9 independent groups. Totally 6 groupgarameter settings. From Fig. 3 and 4, it is dleair IPM
follow two-locus interaction models (2 groups fach  or CDM outperform stepwise logistic regression iosm
of Model 1, 2 and 3 in Table 1). 3 groups arecorados parameter settings. And BIC is more powerful thd@.A
of three-locus conditional independent interacti(orse

group for each of Model 1, 2 and 3 in Table 1). Results for RBP compared with stepwise logistic
regression: Then we simulated a complicated
RESULTSAND DISCUSSION interaction model to access the power of RBP (see

Methods). In this simulation, there are totally 21
Results of simulations from HapMap: We simulated disease-associated SNPs in 6 two-locus marginal
case control data from HapMap data (see Methodddependence groups (2 for each of the models bteTa
under three disease models and compared the pdwer & and 3 three-locus conditional independence group
IPM, CDM and RBP with stepwise logistic regression(One for ach of the models in Table 1. RBP firsts
(Chambers and Hastie, 1992) using AIC and BIC. wdPM to mfer the '”‘?'?Pe”d‘?”ce groups and_ t_hen uses
first used BEAM2 (Zhanget al., 2011) to search for CDM to infer conditional independence within each
associated SNPs. We ranked SNPs in each datasg-:rpurl)'t.':'guc;e,[5 STOW_?hthe power b?r)](pl?t o{_Rngﬁsr
according to their association posterior probabdit simuation dalasets. ihe power IS the raction

then calculate the power of each program from 5(ghose|nteract|ons are correctly inferred (i.e., the

. ) origaf NPs are inferred in the correct independent group
?;;a,:zztsé;gi ?g\évfééssrﬁgggdtﬁz tg%frri?,t;'(%ré SNSS Kith correct neighbors and relationships). It isail
. ) e " that as interaction parametd) (increases, the power
SNP is regarded as disease related if it is wBh8NPs P ) P

. ; . substantially increase and the minor allele
on either side of a true disease locus. The reswls o4 encies (f) make little difference except that

shown in Fig. 1 for marginal independence and Big. \yhen f = 0.5, there is a big drop in power. We also
for conditional independence simulations. tried stepwise logistic regression on these

Consistent with the simulation results from Zhangsimulations, but due to complicated interactions,
et al. (2011) , we observed that BEAM2 can identify neither AIC or BIC (general model or additive
most of the associated SNPs with good power fokodel) can have positive power.
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Marginal independence simulations
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Fig. 1: Power curves of BEAM2 on marginal indeperaesimulations. Under each setting, the powealisutated
as the proportion of disease-associated SNPs uatisets identified within 5 SNPs from the top mPSN
ranked by posterior probability (m ranges from DJLEach data set contains 1,000 SNPs in 1000 easks
1000 controls. The disease allele frequency inpihulation is 0.05 (pink), 0.10 (blue), 0.20 (greand

0.50 (red), respectively

Condition independence simulations
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Fig. 2: Power curves of BEAM2 on conditional indegence simulations. Under each setting, the power i
calculated as the proportion of disease-associhéels in 50 datasets identified within 5 SNPs frbmtop
m SNPs ranked by posterior probability (m rangesfrl-100). Each data set contains 1,000 SNPs i 100
cases and 1000 controls. The disease allele freguenthe population is 0.05 (pink), 0.10 (blue)2®

(green) and 0.50 (red), respectively
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Fig.3: For marginal independence simulations (sethbs), Fig. 3 show the powers of IPM and step\agestic
regression (general model, i.e., genotypes ardetteas categorical variables and additive model, i
genotypes (AA, Aa, aa) are treated as 0, 1, 2 nigalerariables) using AIC and BIC. Theta is theenaction

parametef in Table 1. MAF is minor allele frequency
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Fig. 4. For conditional independence simulationgufe 4 shows the powers of CDM and stepwise lamist
regression (general and additive models) using &8IC. Theta is the interaction parameien Table 1.

MAF is minor allele frequency
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Fig. 6: (a) SNP-wise posterior probabilities forMIBC T1D data using BEAM2 and SNPs with posterior
probabilities >0.5 are numbered. The doMHC sampiere collected from over 20 populations worldwide,
among which 1473 individuals had unknown origin@ avoid potential confounding effects of the
population structure, we only used data from thedsh population, which contained 665 cases and 524
controls. Dot indicates the marginal posterior bty of association per SNP and circle indicaties
total posterior probability of association per S{Rarginal plus joint). We connect the dot and eirfdr
each SNP for better illustration; (b) The proceduir&BP. First we applied IPM to all of the 28 adated
SNPs. Only the 25th SNP comes out independentill dfie others. Then reapplying IPM to the resof
SNPs, only the 24th SNP is independent of the @B6eBNPs. When reapplying IPM to the rest 26 SNPs,
no independence was found (posterior probabilit@}»0rhen we applied CDM to the 26-SNP group, again
no conditional independence was found (posteriobgipility >0.9)

Validation of RBP with dbMHC T1D data: We used independence within the group. We first applied BEA
T1D data from dbMHC to search for associated SNPs with posterior piititied
(http://www.ncbi.nim.nih.gov/gv/mhc/) to validateuo >0.5. Figure 6a shows the posterior probabiliaesl
RBP method. The data contained resequenced haptotypnumber SNPs with posterior probabilities >0.5. Then
of exons of two MHC genes DRB1 and DQBL1. Since itwe applied RBP to detect marginal independence and
is well-known that in HLA DQ-DR region SNPs form conditional independence recursively. Figure Giwsh
associated haplotypes rather than interactions, RBEhe procedure of RBP. First we applied IPM to alihe
should find most associated SNPs in this regiosteiun 28 associated SNPs. Only the 25th SNP comes out
one big marginal independent group and no condition independently of all the others.
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is much more powerful than stepwise logistic

o R e

Block structure is randomly checen from HapMap regression. We also validated RBP using dbMHC T1D
SNP1 SNP2 DI D2 D3 D4 SNP 1000 data and showed DQB1 and DRB1 form strong
' "~ Disag >=— Disaase- associated haplotypes for T1D.
- imeraction meracion Although this type of Bayesian recursive partition
oy ) idea has been successfully used in several diiteren
(@) scenarios (Zhangt al., 2010; Svicheret al., 2011a;
2011b) the current RBP model can be further impdove
o B R in several ways. First, this model does not comside
Block structure is randomly cheeen from HapMap . .
missing genotypes and unobserved SNPs in the case-

SNP1 SNP2 D1 D2 D3 SNP 1000 . . .
— : control sample, but this can be treated via impartabr

Discase-associated EM algorithm incorporated in RBP model. Previous

Conditional independence group

T T e studies have shown that imputing untyped SNPsand

T missing genotypes from a reference panel can ingprov
(b) the power of disease association mapping (Svieher

al., 2011a). Second, the current model only considers

one case and one control data. Actually RBP maaiel ¢

case control data, we first randomly select gbe improved FO inc_orporate multiple case-con;rol
region in the human genome that contains 1004!atasets and improving the detecting power since

tagged SNPs from HapMap. Four SNPs (D1 pzrelated information can be borrowed from multiple
D3, D4) are then randomly selected as diseasg@se-control datasets. We are now developing new

loci for two marginal independent groups statistical methods for these improvements.

Fig. 7: (a) The illustration of marginal independen
simulations (Dinget al., 2005a). To simulate
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