Multi-View RGB-D Video Analysis and Fusion for 360 Degrees Unified Motion Reconstruction
- 1 University of Sharjah, United Arab Emirates
Abstract
We present a new method for capturing human motion over 360 degrees by the fusion of multi-view RGB-D video data from Kinect sensors. Our method is able to reconstruct the unified human motion from fused RGB-D and skeletal data over 360 degrees and create a unified skeletal animation. We make use of all three streams: RGB, depth and skeleton, along with the joint tracking confidence state from Microsoft Kinect SDK to find the correctly oriented skeletons and merge them together to get a uniform measurement of human motion resulting in a unified skeletal animation. We quantitatively validate the goodness of the unified motion using two evaluation techniques. Our method is easy to implement and provides a simple solution of measuring and reconstructing a 360 degree plausible unified human motion that would not be possible to capture with a single Kinect due to tracking failures, self-occlusions, limited field of view and subject orientation.
DOI: https://doi.org/10.3844/jcssp.2017.795.804
Copyright: © 2017 Naveed Ahmed. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
- 3,329 Views
- 2,253 Downloads
- 1 Citations
Download
Keywords
- 3D Animation
- Kinect
- RGB-D Video
- Motion Capture
- Multi-View Video